Exploring the Potential of Posidonia oceanica Fibers in Eco-Friendly Composite Materials: A Review
Abstract
:1. Introduction
1.1. Context
1.2. Review Method and Structure
- Its accumulation and then possible role of waste/refuse (black criterion);
- Its potential as a natural fiber (brown criterion);
- Its function in a durable material, so in terms of strength (red criterion);
- Its coupling in a composite, hence providing an interface with the matrix (orange criterion)
1.3. The Question of Posidonia Piling on Backshore
2. Posidonia Oceanica: Characteristics and Fiber Potential
2.1. Morphological Characteristics of the Residues from Posidonia Banquettes
2.2. Chemical Composition and Properties of the Fibers
2.3. Acoustic and Thermal Characterization of Posidonia Fibers
3. Proposals to Bind Posidonia Fibers into a Material: From Wood-Replacement Boards to Cementitious Composites
3.1. Use of Binders with Posidonia: Wood-Replacement Boards
3.2. Cementitious Composites
4. Processing of Posidonia Fibers for Composite Applications
4.1. General-Purpose Studies Evaluating Posidonia Fiber Potential in Polymer Matrices
4.2. Use of Posidonia Fibers in Combination with Polysaccharide-Based Biodegradable Matrices
4.3. Posidonia as a Source of Nanocrystalline Cellulose (NCC) for Nanocomposites
5. Opportunities and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Post, W.; Susa, A.; Blaauw, R.; Molenveld, K.; Knoop, R.J. A review on the potential and limitations of recyclable thermosets for structural applications. Polym. Rev. 2020, 60, 359–388. [Google Scholar] [CrossRef]
- Rangappa, S.M.; Siengchin, S.; Parameswaranpillai, J.; Jawaid, M.; Ozbakkaloglu, T. Lignocellulosic fiber reinforced composites: Progress, performance, properties, applications, and future perspectives. Polym. Compos. 2022, 43, 645–691. [Google Scholar] [CrossRef]
- Vinod, A.; Sanjay, M.R.; Siengchin, S. Recently explored natural cellulosic plant fibers 2018–2022: A potential raw material resource for lightweight composites. Ind. Crops Prod. 2023, 192, 116099. [Google Scholar] [CrossRef]
- Väisänen, T.; Haapala, A.; Lappalainen, R.; Tomppo, L. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Manag. 2016, 54, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Fragassa, C.; de Camargo, F.V.; Santulli, C. Sustainable biocomposites: Harnessing the potential of waste seed-based fillers in eco-friendly materials. Sustainability 2024, 16, 1526. [Google Scholar] [CrossRef]
- De, S.; James, B.; Ji, J.; Wasti, S.; Zhang, S.; Kore, S.; Tekinalp, H.; Li, Y.; Ureña-Benavides, E.E.; Vaidya, U.; et al. Biomass-derived composites for various applications. Adv. Bioenergy 2023, 8, 145–196. [Google Scholar] [CrossRef]
- Ji, A.; Zhang, S.; Bhagia, S.; Yoo, C.G.; Ragauskas, A.J. 3D printing of biomass-derived composites: Application and characterization approaches. RSC Adv. 2020, 10, 21698–21723. [Google Scholar] [CrossRef]
- Mehra, R.; Bhushan, S.; Gill, B.S.; Rehman, W.U.; Bast, F. Algae-based composites and their applications. In Biocomposites; Ahmed, S., Ikram, S., Kanchi, S., Bisetty, K., Eds.; Jenny Stanford Publishing: Singapore, 2018; pp. 163–179. [Google Scholar]
- Raus, R.A.; Nawawi, W.M.F.W.; Nasaruddin, R.R. Alginate and alginate composites for biomedical applications. Asian J. Pharm. Sci. 2021, 16, 280–306. [Google Scholar] [CrossRef]
- Santulli, C.; Fragassa, C.; Pavlovic, A.; Nikolic, D. Use of sea waste in composite materials: A review. J. Mar. Sci. Eng. 2023, 11, 855. [Google Scholar] [CrossRef]
- Rosdi, F.N.M.; Salim, N.; Roslan, R.; Bakar, N.H.A.; Sarmin, S.N. Potential red algae fibre waste as a raw material for biocomposite. J. Adv. Res. Appl. Sci. Eng. Technol. 2023, 30, 303–310. [Google Scholar] [CrossRef]
- Allouche, F.N. A user-friendly Ulva lactuca/chitosan composite bead for mercury removal. Inorg. Chem. Commun. 2021, 130, 108747. [Google Scholar] [CrossRef]
- Jantasrirad, S.; Mayakun, J.; Numnuam, A.; Kaewtatip, K. Effect of filler and sonication time on the performance of brown alga (Sargassum plagiophyllum) filled cassava starch biocomposites. Algal Res. 2021, 56, 102321. [Google Scholar] [CrossRef]
- Mohamad, N.; Latiff, A.A.; Maulod, H.E.A.; Azam, M.A.; Manaf, M.E.A. A sustainable polymer composite from recycled polypropylene filled with shrimp shell waste. Polym.-Plast. Technol. Eng. 2014, 53, 167–172. [Google Scholar] [CrossRef]
- Antoniac, I.; Lesci, I.G.; Blajan, A.I.; Vitioanu, G.; Antoniac, A. Bioceramics and biocomposites from marine sources. Key Eng. Mater. 2016, 672, 276–292. [Google Scholar] [CrossRef]
- Klarić, L.; Ðapo, A.; Pribičević, B. Optimization of acoustic survey methods for habitat mapping of the Posidonia oceanica algae on the eastern coast of the Adriatic. In Proceedings of the International Multidisciplinary Scientific GeoConference, SGEM, Albena, Bulgaria, 2–11 July 2022; Volume 22, pp. 125–134. [Google Scholar] [CrossRef]
- Plant of the World Online, in “Kew Botanical Gardens”, Posidonia oceanica (L.) Delile. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:603103-1#publications (accessed on 14 January 2025).
- Rotini, A.; Chiesa, S.; Manfra, L.; Borrello, P.; Piermarini, R.; Silvestri, C.; Cappucci, S.; Parlagreco, L.; Devoti, S.; Pisapia, M.; et al. Effectiveness of the “ecological beach” model: Beneficial management of posidonia beach casts and banquette. Water 2020, 12, 3238. [Google Scholar] [CrossRef]
- Chadlia, A.; Farouk, M.H.M. Removal of basic blue 41 from aqueous solution by carboxymethylated Posidonia oceanica. J. Appl. Polym. Sci. 2007, 103, 1215–1225. [Google Scholar] [CrossRef]
- Ferchichi, K.; Amdouni, N.; Chevalier, Y.; Hbaieb, S. Low-cost Posidonia oceanica bio-adsorbent for efficient removal of antibiotic oxytetracycline from water. Environ. Sci. Pollut. Res. 2022, 29, 83112–83125. [Google Scholar] [CrossRef]
- Christopoulou, N.M.; Kalogianni, D.P.; Christopoulos, T.K. Posidonia oceanica (Mediterranean tapeweed) leaf litter as a source of fluorescent carbon dot preparations. Microchem. J. 2021, 161, 105787. [Google Scholar] [CrossRef]
- Chadlia, A.; Mohamed, K.; Najah, L. Preparation and characterization of new succinic anhydride grafted Posidonia for the removal of organic and inorganic pollutants. J. Hazard. Mater. 2009, 172, 1579–1590. [Google Scholar] [CrossRef] [PubMed]
- Muratore, N.; Lascari, D.; Cataldo, S.; Raccuia, S.G.M.; Lando, G.; Meo, P.L.; Chiodo, V.; Maisano, S.; Urbani, F.; Pettignano, A. Recovery of rare earth elements by adsorption on biochar of dead Posidonia oceanica leaves. J. Rare Earths 2024, in press. [Google Scholar] [CrossRef]
- Benito-González, I.; López-Rubio, A.; Martínez-Abad, A.; Ballester, A.R.; Falcó, I.; González-Candelas, L.; Sánchez, G.; Lozano-Sánchez, J.; Borrás-Linares, I.; Segura-Carretero, A.; et al. In-depth characterization of bioactive extracts from Posidonia oceanica waste biomass. Mar. drugs 2019, 17, 409. [Google Scholar] [CrossRef] [PubMed]
- Bidak, L.M.; Heneidy, S.Z.; Wenzhao, L.; Fakhry, A.M.; El-Kenany, E.T.; El-Askary, H.M.; Abdel-Kareem, M.S. Mediterranean tapeweed Posidonia oceanica (L.) Delile, an endangered seagrass species. Egypt. J. Bot. 2021, 61, 335–348. [Google Scholar] [CrossRef]
- Khiari, R.; Belgacem, M.N. Potential for using multiscale Posidonia oceanica waste: Current status and prospects in material science. In Lignocellulosic Fibre and Biomass-Based Composite Materials; Jawaid, M., Saba, N., Paridah, M.T., Eds.; Woodhead: Sawston, UK, 2017; pp. 447–471. [Google Scholar] [CrossRef]
- Castaldi, P.; Melis, P. Composting of Posidonia oceanica and its use in agriculture. In Microbiology of Composting; Springer: Berlin/Heidelberg, Germany, 2002; pp. 425–434. [Google Scholar]
- Masmoudi, G.; Dhaouadi, H. A review on adsorption of textile dyes onto an unconventional biosorbent: Marine waste of Posidonia oceanica. Chem. Afr. 2024, 7, 2921–2939. [Google Scholar] [CrossRef]
- Marbà, N.; Díaz-Almela, E.; Duarte, C.M. Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009. Biol. Conserv. 2014, 176, 183–190. [Google Scholar] [CrossRef]
- Mateo, M.Á.; Sánchez-Lizaso, J.L.; Romero, J. Posidonia oceanica ‘banquettes’: A preliminary assessment of the relevance for meadow carbon and nutrients budget. Estuar. Coast. Shelf Sci. 2003, 56, 85–90. [Google Scholar] [CrossRef]
- Cantasano, N. Deposition dynamics of Posidonia oceanica “Banquettes” on Calabrian sandy beaches (Southern Italy). Coasts 2021, 1, 25–30. [Google Scholar] [CrossRef]
- Astier, J.M.; Boudouresque, C.F.; Pergent, G.; Pergent-Martini, C. Non-removal of the Posidonia oceanica ‘banquette’ on a beach very popular with tourists: Lessons from Tunisia. Sci. Rep. Port-Cros Natl. 2020, 34, 15–21. [Google Scholar]
- Simeone, S.; Palombo, A.G.L.; Antognarelli, F.; Brambilla, W.; Conforti, A.; De Falco, G. Sediment budget implications from Posidonia oceanica banquette removal in a starved beach system. Water 2022, 14, 2411. [Google Scholar] [CrossRef]
- Fattobene, M.; Santoni, E.; Russo, R.E.; Zamponi, S.; Conti, P.; Sorci, A.; Awais, M.; Liu, F.; Berrettoni, M. Analysis of Posidonia oceanica’s Stress Factors in the Marine Environment of Tremiti Islands, Italy. Molecules 2024, 29, 4197. [Google Scholar] [CrossRef]
- Cocozza, C.; Parente, A.; Zaccone, C.; Mininni, C.; Santamaria, P.; Miano, T. Comparative management of offshore posidonia residues: Composting vs. energy recovery. Waste Manag. 2011, 31, 78–84. [Google Scholar] [CrossRef]
- Pedicini, R.; Maisano, S.; Chiodo, V.; Conte, G.; Policicchio, A.; Agostino, R.G. Posidonia oceanica and wood chips activated carbon as interesting materials for hydrogen storage. Int. J. Hydrogen Energy 2020, 45, 14038–14047. [Google Scholar] [CrossRef]
- De Sanctis, M.; Chimienti, S.; Pastore, C.; Piergrossi, V.; Di Iaconi, C. Energy efficiency improvement of thermal hydrolysis and anaerobic digestion of Posidonia oceanica residues. Appl. Energy 2019, 252, 113457. [Google Scholar] [CrossRef]
- Renzi, M.; Guerranti, C.; Anselmi, S.; Provenza, F.; Leone, M.; La Rocca, G.; Cavallo, A. A multidisciplinary approach to Posidonia oceanica detritus management (Port of Sperlonga, Italy): A story of turning a problem into a resource. Water 2022, 14, 2856. [Google Scholar] [CrossRef]
- Castillo, C.; Mantecón, A.R.; Sotillo, J.; Benedito, J.L.; Abuelo, A.; Gutiérrez, C.; Hernández, J. The use of banquettes of Posidonia oceanica as a source of fiber and minerals in ruminant nutrition. An observational study. Animal 2014, 8, 1663–1666. [Google Scholar] [CrossRef] [PubMed]
- Serrano, O.; Mateo, M.A.; Renom, P.; Julià, R. Characterization of soils beneath a Posidonia oceanica meadow. Geoderma 2012, 185, 26–36. [Google Scholar] [CrossRef]
- Abadie, A.; Pace, M.; Gobert, S.; Borg, J.A. Seascape ecology in Posidonia oceanica seagrass meadows: Linking structure and ecological processes for management. Ecol. Indic. 2018, 87, 1–13. [Google Scholar] [CrossRef]
- Pergent-Martini, C.; Pergent, G.; Monnier, B.; Boudouresque, C.F.; Mori, C.; Valette-Sansevin, A. Contribution of Posidonia oceanica meadows in the context of climate change mitigation in the Mediterranean Sea. Mar. Environ. Res. 2021, 165, 105236. [Google Scholar] [CrossRef]
- Ceccherelli, G.; Chiabrando, F.; Gallitto, F.; Lingua, A.; Longhi, V.; Maschio, P.; Matrone, F.; Menna, F.; Nocerino, E.; Scalici, M.; et al. Multitemporal Seagrass Mapping and Monitoring of Posidonia Meadows and Banquettes for Blue Carbon Conservation: The Poseidon Project. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 48, 65–71. [Google Scholar] [CrossRef]
- Cocozza, P.; Serranti, S.; Setini, A.; Cucuzza, P.; Bonifazi, G. Monitoring of contamination by microplastics on sandy beaches at Vulcano Island (Sicily, Italy) by hyperspectral imaging. Environ. Sci. Pollut. Res. 2024, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Simeone, S.; De Falco, G. Morphology and composition of beach-cast Posidonia oceanica litter on beaches with different exposures. Geomorphology 2012, 151, 224–233. [Google Scholar] [CrossRef]
- Shabaka, S.H.; Khalil, M.K.; El-Sikaily, A.; Youssef, N.A.E. Posidonia oceanica litter along the Mediterranean Coast of Egypt: Status and a preliminary assessment of nutrients and trace elements contents. Estuar. Coast. Shelf Sci. 2021, 255, 107342. [Google Scholar] [CrossRef]
- Pisani, D.; De Lucia, C.; Pazienza, P.; Mastrototaro, F.; Tursi, A.; Chimienti, G. Assessing the economic value of Posidonia oceanica (L.) at Tremiti Islands (Mediterranean Sea): An ecosystem condition-based approach. Mar. Pollut. Bull. 2024, 202, 116274. [Google Scholar] [CrossRef] [PubMed]
- Zenone, A.; Filippov, A.E.; Kovalev, A.; Badalamenti, F.; Gorb, S.N. Root hair adhesion in Posidonia oceanica (L.) Delile seedlings: A numerical modelling approach. Front. Mech. Eng. 2020, 6, 590894. [Google Scholar] [CrossRef]
- Bettaieb, F.; Khiari, R.; Hassan, M.L.; Belgacem, M.N.; Bras, J.; Dufresne, A.; Mhenni, M.F. Preparation and characterization of new cellulose nanocrystals from marine biomass Posidonia oceanica. Ind. Crops Prod. 2015, 72, 175–182. [Google Scholar] [CrossRef]
- Ferrero, B.; Boronat, T.; Moriana, R.; Fenollar, O.; Balart, R. Green composites based on wheat gluten matrix and Posidonia oceanica waste fibers as reinforcements. Polym. Compos. 2013, 34, 1663–1669. [Google Scholar] [CrossRef]
- Kamoun, A.; Jelidi, A.; Chaabouni, M. Evaluation of the performance of sulfonated esparto grass lignin as a plasticizer–water reducer for cement. Cem. Concr. Res. 2003, 33, 995–1003. [Google Scholar] [CrossRef]
- Hassen, B.; Sghaier, D.B.; Matmati, E.; Mraouna, R.; El Bour, M. Detection and quantification of microplastics in Posidonia oceanica banquettes in the Gulf of Gabes, Tunisia. Environ. Sci. Pollut. Res. 2024, 31, 57196–57203. [Google Scholar] [CrossRef] [PubMed]
- Restaino, O.F.; Giosafatto, C.V.L.; Mirpoor, S.F.; Cammarota, M.; Hejazi, S.; Mariniello, L.; Schiraldi, C.; Porta, R. Sustainable Exploitation of Posidonia oceanica Sea Balls (Egagropili): A Review. Int. J. Mol. Sci. 2023, 24, 7301. [Google Scholar] [CrossRef] [PubMed]
- Mnafki, R.; Morales, A.; Sillero, L.; Khiari, R.; Moussaoui, Y.; Labidi, J. Integral Valorization of Posidonia oceanica Balls: An Abundant and Potential Biomass. Polymers 2024, 16, 164. [Google Scholar] [CrossRef] [PubMed]
- Kaal, J.; Serrano, O.; del Río, J.C.; Rencoret, J. Radically different lignin composition in Posidonia species may link to differences in organic carbon sequestration capacity. Organ. Geochem. 2018, 124, 247–256. [Google Scholar] [CrossRef]
- Tarrés, Q.; Espinosa, E.; Domínguez-Robles, J.; Rodríguez, A.; Mutjé, P.; Delgado-Aguilar, M. The suitability of banana leaf residue as raw material for the production of high lignin content micro/nano fibers: From residue to value-added products. Ind. Crops Prod. 2017, 99, 27–33. [Google Scholar] [CrossRef]
- Fioretto, A.; Di Nardo, C.; Papa, S.; Fuggi, A. Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biol. Biochem. 2005, 37, 1083–1091. [Google Scholar] [CrossRef]
- Vikman, M.; Karjomaa, S.; Kapanen, A.; Wallenius, K.; Itävaara, M. The influence of lignin content and temperature on the biodegradation of lignocellulose in composting conditions. Appl. Microbiol. Biotechnol. 2002, 59, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Mininni, C.; Bustamante, M.A.; Medina, E.; Montesano, F.; Paredes, C.; Pérez-Espinosa, A.; Moral, R.; Santamaria, P. Evaluation of posidonia seaweed-based compost as a substrate for melon and tomato seedling production. J. Hortic. Sci. Biotechnol. 2013, 88, 345–351. [Google Scholar] [CrossRef]
- Cocozza, C.; Parente, A.; Zaccone, C.; Mininni, C.; Santamaria, P.; Miano, T. Chemical, physical and spectroscopic characterization of Posidonia oceanica (L.) Del. residues and their possible recycle. Biomass Bioenergy 2011, 35, 799–807. [Google Scholar] [CrossRef]
- Zaafouri, K.; Trabelsi, A.B.H.; Krichah, S.; Ouerghi, A.; Aydi, A.; Claumann, C.A.; Wüst, Z.A.; Naoui, S.; Bergaoui, L.; Hamdi, M. Enhancement of biofuels production by means of co-pyrolysis of Posidonia oceanica (L.) and frying oil wastes: Experimental study and process modeling. Bioresour. Technol. 2016, 207, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Chiodo, V.; Zafarana, G.; Maisano, S.; Freni, S.; Urbani, F. Pyrolysis of different biomass: Direct comparison among Posidonia oceanica, Lacustrine Alga and White-Pine. Fuel 2016, 164, 220–227. [Google Scholar] [CrossRef]
- Özdemir, H.N.; Seki, Y.; Türkoğlu, G.C.; Akçalı, B.; Neşer, G. Study on natural cellulosic fiber from Posidonia oceanica waste: Characterization and analysis. Tekst. Mühendis 2023, 30, 95–101. [Google Scholar] [CrossRef]
- Zannen, S.; Ghali, L.; Halimi, M.T.; Hassen, M.B. Effect of combined chemical treatment on physical, mechanical and chemical properties of Posidonia fiber. Adv. Mater. Phys. Chem. 2016, 6, 275–290. [Google Scholar] [CrossRef]
- Ghali, L.; Halimi, M.T.; Hassen, M.B.; Sakli, F. Effect of blending ratio of fibers on the properties of nonwoven fabrics based of alfa fibers. Adv. Mater. Phys. Chem. 2014, 4, 116. [Google Scholar] [CrossRef]
- Balakrishnan, S.; Wickramasinghe, G.L.D.; Wijayapala, U.S. Investigation on improving banana fiber fineness for textile application. Text. Res. J. 2019, 89, 4398–4409. [Google Scholar] [CrossRef]
- Ceraulo, M.; Papale, E.; Caruso, F.; Filiciotto, F.; Grammauta, R.; Parisi, I.; Mazzola, S.; Farina, A.; Buscaino, G. Acoustic comparison of a patchy Mediterranean shallow water seascape: Posidonia oceanica meadow and sandy bottom habitats. Ecol. Indic. 2018, 85, 1030–1043. [Google Scholar] [CrossRef]
- Pompoli, F. Acoustical characterization and modeling of sustainable posidonia fibers. Appl. Sci. 2023, 13, 4562. [Google Scholar] [CrossRef]
- Pompoli, F.; Marescotti, C. Acoustical and Physical Characterization of Posidonia oceanica Fibres for Sound Absorbing Applications. In Proceedings of the 10th Convention of the European Acoustics Association Forum Acusticum, Turin, Italy, 11–15 September 2023; pp. 4589–4590. [Google Scholar]
- Mohammadi, M.; Taban, E.; Tan, W.H.; Din, N.B.C.; Putra, A.; Berardi, U. Recent progress in natural fiber reinforced composite as sound absorber material. J. Build. Eng. 2024, 84, 108514. [Google Scholar] [CrossRef]
- Calvo, R. Thermal insulation role and possible exploitation of Posidonia oceanica detritus in the Mediterranean area. Flora Mediterr. 2018, 28, 279–285. [Google Scholar] [CrossRef]
- Hamdaoui, O.; Ibos, L.; Mazioud, A.; Safi, M.; Limam, O. Thermophysical characterization of Posidonia oceanica marine fibers intended to be used as an insulation material in Mediterranean buildings. Constr. Build. Mater. 2018, 180, 68–76. [Google Scholar] [CrossRef]
- Ben Hadj Tahar, D.; Triki, Z.; Guendouz, M.; Tahraoui, H.; Zamouche, M.; Kebir, M.; Zhang, J.; Amrane, A. Characterization and Thermal Evaluation of a Novel Bio-Based Natural Insulation Material from Posidonia oceanica Waste: A Sustainable Solution for Building Insulation in Algeria. Chemengineering 2024, 8, 18. [Google Scholar] [CrossRef]
- Mehrez, I.; Hachem, H.; Gheith, R.; Jemni, A. Valorization of Posidonia-Oceanica leaves for the building insulation sector. J. Compos. Mater. 2022, 56, 1973–1985. [Google Scholar] [CrossRef]
- Maciá, A.; Baeza, F.J.; Saval, J.M.; Ivorra, S. Mechanical properties of boards made in biocomposites reinforced with wood and Posidonia oceanica fibers. Compos. Part B Eng. 2016, 104, 1–8. [Google Scholar] [CrossRef]
- Conesa, J.A.; Domene, A. Gasification and pyrolysis of Posidonia oceanica in the presence of dolomite. J. Anal. Appl. Pyrolysis 2015, 113, 680–689. [Google Scholar] [CrossRef]
- Plis, A.; Lasek, J.A.; Zuwała, J.; Yu, C.C.; Iluk, A. Combustion performance evaluation of Posidonia oceanica using TGA and bubbling fluidized-bed combustor (batch reactor). J. Sustain. Min. 2016, 15, 181–190. [Google Scholar] [CrossRef]
- Rammou, E.; Mitani, A.; Ntalos, G.; Koutsianitis, D.; Taghiyari, H.R.; Papadopoulos, A.N. The potential use of seaweed (Posidonia oceanica) as an alternative lignocellulosic raw material for wood composites manufacture. Coatings 2021, 11, 69. [Google Scholar] [CrossRef]
- Capretti, M.; Giammaria, V.; Santulli, C.; Boria, S.; Del Bianco, G. Use of Bio-Epoxies and Their Effect on the Performance of Polymer Composites: A Critical Review. Polymers 2023, 15, 4733. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, D.; Quiles-Carrillo, L.; Montanes, N.; Fombuena, V.; Balart, R. Manufacturing and characterization of composite fibreboards with Posidonia oceanica wastes with an environmentally-friendly binder from epoxy resin. Materials 2017, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Maghchiche, A. Natural Fibers for a Green Future: A Review on the Versatility of Esparto Grass in Industry and Technology. J. Biores Manag. 2024, 11, 24–37. [Google Scholar]
- Guesmi, H.; Adili, A.; Dehmani, L. Effect of fibers surface treatments on the mechanical and thermal properties of composites reinforced by eco-friendly fibers. Int. J. Environ. Sci. Technol. 2023, 20, 9505–9520. [Google Scholar] [CrossRef]
- Kuqo, A.; Boci, I.; Vito, S.; Vishkulli, S. Mechanical properties of lightweight concrete composed with Posidonia oceanica fibres. Zast. Mater. 2018, 59, 519–523. [Google Scholar] [CrossRef]
- Benjeddou, O.; Jedidi, M.; Khadimallah, M.A.; Ravindran, G.; Sridhar, J. Effect of Posidonia oceanica fibers addition on the thermal and acoustic properties of cement paste. Buildings 2022, 12, 909. [Google Scholar] [CrossRef]
- Allègue, L.; Zidi, M.; Sghaier, S. Mechanical properties of Posidonia oceanica fibers reinforced cement. J. Compos. Mater. 2015, 49, 509–517. [Google Scholar] [CrossRef]
- ASTM E413-22; Classification for Rating Sound Insulation. ASTM International: West Conshohocken, PA, USA, 2022.
- Hamdaoui, O.; Limam, O.; Ibos, L.; Mazioud, A. Thermal and mechanical properties of hardened cement paste reinforced with Posidonia-Oceanica natural fibers. Constr. Build. Mater. 2021, 269, 121339. [Google Scholar] [CrossRef]
- Jedidi, M.; Abroug, A. Valorization of Posidonia oceanica Balls for the Manufacture of an Insulating and Ecological Material. Jordan J. Civ. Eng. 2020, 14, 417–430. [Google Scholar]
- Jedidi, M. Experimental study of the effect of the addition of Posidonia oceanica fiber on the thermal and acoustic insulation properties of plaster. Eng. Res. Express 2024, 6, 035108. [Google Scholar] [CrossRef]
- Guedri, A.; Yahya, K.; Hamdi, N.; Baeza-Urrea, O.; Wagner, J.F.; Zagrarni, M.F. Properties Evaluation of Composite Materials Based on Gypsum Plaster and Posidonia oceanica Fibers. Buildings 2023, 13, 177. [Google Scholar] [CrossRef]
- Kuqo, A.; Mai, C. Mechanical properties of lightweight gypsum composites comprised of seagrass Posidonia oceanica and pine (Pinus sylvestris) wood fibers. Constr. Build. Mater. 2021, 282, 122714. [Google Scholar] [CrossRef]
- Herráiz, T.R.; Herráiz, J.I.R.; Domingo, L.M.; Domingo, F.C. Posidonia oceanica used as a new natural fibre to enhance the performance of asphalt mixtures. Constr. Build. Mater. 2016, 102, 601–612. [Google Scholar] [CrossRef]
- Braiek, A.; Briki, C.; Karkri, M.; Settar, A.; Jemni, A. Thermo-physical and mechanical performances of a new lightweight construction material made with clay and Posidonia-Oceanica fibers. Case Stud. Constr. Mater. 2023, 19, e02599. [Google Scholar] [CrossRef]
- Calvino, M.M.; Cavallaro, G.; Milioto, S.; Lazzara, G. Composite materials based on halloysite clay nanotubes and cellulose from Posidonia oceanica sea balls: From films to geopolymers. Environ. Sci. Nano 2024, 11, 1508–1520. [Google Scholar] [CrossRef]
- Ossoli, E.; Volpintesta, F.; Stabile, P.; Reggiani, A.; Santulli, C.; Paris, E. Upcycling of composite materials waste into geopolymer-based mortars for applications in the building sector. Mater. Lett. 2023, 333, 133625. [Google Scholar] [CrossRef]
- Yang, Z.; Zhan, X.; Zhu, H.; Zhang, B.; Li, R.; Dong, Z.; Kua, H.W. Eco-sustainable design of seawater sea-sand slag-based geopolymer mortars incorporating ternary solid waste. Constr. Build. Mater. 2024, 431, 136512. [Google Scholar] [CrossRef]
- Kuqo, A.; Mayer, A.K.; Amiandamhen, S.O.; Adamopoulos, S.; Mai, C. Enhancement of physico-mechanical properties of geopolymer particleboards through the use of seagrass fibers. Constr. Build. Mater. 2023, 374, 130889. [Google Scholar] [CrossRef]
- Kuqo, A.; Koddenberg, T.; Mai, C. Use of dry mixing-spraying process for the production of geopolymer-bonded wood and seagrass fibreboards. Compos. Part B Eng. 2023, 248, 110387. [Google Scholar] [CrossRef]
- Haddar, M.; Ben Slim, Y.; Koubaa, S. Mechanical and water absorption behavior of thermoset matrices reinforced with natural fiber. Polym. Compos. 2022, 43, 3481–3495. [Google Scholar] [CrossRef]
- Zhao, W.; Wu, Z.; Liu, Y.; Dai, P.; Hai, G.; Liu, F.; Shang, Y.; Cao, Z.; Yang, W. Research progress of natural products and their derivatives in marine antifouling. Materials 2023, 16, 6190. [Google Scholar] [CrossRef] [PubMed]
- Fragassa, C.; Mattiello, S.; Fronduti, M.; Del Gobbo, J.; Gagic, R.; Santulli, C. Prevention of biofouling due to water absorption of natural fiber composites in the aquatic environment: A critical review. J. Compos. Sci. 2024, 8, 532. [Google Scholar] [CrossRef]
- Ricciardi, M.R.; Antonucci, V. Fire behavior of Posidonia oceanica epoxy composites. In Proceedings of the AIP Conference Proceedings, 9th International Conference on “Times of Polymers and Composites”, Ischia, Italy, 17–21 June 2018; Volume 1981. [Google Scholar] [CrossRef]
- Haddar, M.; Elloumi, A.; Bradai, C.; Koubaa, A. Characterization of Posidonia oceanica Fibers High-Density Polyethylene Composites: Reinforcing Potential and Effect of Coupling Agent. J. Compos. Sci. 2024, 8, 236. [Google Scholar] [CrossRef]
- Zannen, S.; Kanan, M.; Beh Hassen, M.; Khouj, M.; Sakli, F.; Bahram, A.S.; Alotaibi, F.; Jaradat, S.Y.; Al-Shalout, I. Polypropylene Composites Reinforced by Marine Posidonia Fiber Waste: Effect of Silane and Alkali treatment. Inf. Sci. Lett. 2023, 12, 2941–2949. [Google Scholar] [CrossRef]
- Puglia, D.; Petrucci, R.; Fortunati, E.; Luzi, F.; Kenny, J.M.; Torre, L. Revalorisation of Posidonia oceanica as reinforcement in polyethylene/maleic anhydride grafted polyethylene composites. J. Renew. Mater. 2014, 2, 66–76. [Google Scholar] [CrossRef]
- Ferrero, B.; Fombuena, V.; Fenollar, O.; Boronat, T.; Balart, R. Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polym. Compos. 2015, 36, 1378–1385. [Google Scholar] [CrossRef]
- Haddar, M.; Elloumi, A.; Koubaa, A.; Bradai, C.; Migneault, S.; Elhalouani, F. Synergetic effect of Posidonia oceanica fibres and deinking paper sludge on the thermo-mechanical properties of high density polyethylene composites. Ind. Crops Prod. 2018, 121, 26–35. [Google Scholar] [CrossRef]
- Menezes, O.; Roberts, T.; Motta, G.; Patrenos, M.H.; McCurdy, W.; Alotaibi, A.; Vanderpool, M.; Vaseghi, M.; Beheshti, A.; Davami, K. Performance of additively manufactured polylactic acid (PLA) in prolonged marine environments. Polym. Degrad. Stab. 2022, 199, 109903. [Google Scholar] [CrossRef]
- Agarwala, N. Utility of 3D printing in ship repairs. Marit. Technol. Res. 2025, 7, 272285. [Google Scholar] [CrossRef]
- Acosta, Y.R.; Martinez, E.C.; Acosta, A.R.; Torre, L.S.; Gonzales, C.A.; Cespedes, R.N. Release Studies to Improve the Mechanical Properties of the Biopolymer, Polylactic Acid (PLA) for Food Packaging Applications. In Engineering Principles for Food Processing Technology and Product Realization; Torre, L.S., Kannan, P., Haghi, A.K., Eds.; Apple Academic Press: New York, NY, USA, 2025; pp. 67–85. [Google Scholar]
- Benito-González, I.; López-Rubio, A.; Martínez-Sanz, M. Potential of lignocellulosic fractions from Posidonia oceanica to improve barrier and mechanical properties of bio-based packaging materials. Int. J. Biol. Macromol. 2018, 118, 542–551. [Google Scholar] [CrossRef]
- Martinez Villadiego, K.; Arias Tapia, M.J.; Useche, J.; Escobar Macías, D. Thermoplastic starch (TPS)/polylactic acid (PLA) blending methodologies: A review. J. Polym. Environ. 2022, 30, 75–91. [Google Scholar] [CrossRef]
- Khiari, R.; Marrakchi, Z.; Belgacem, M.N.; Mauret, E.; Mhenni, F. New lignocellulosic fibres-reinforced composite materials: A stepforward in the valorisation of the Posidonia oceanica balls. Compos. Sci. Technol. 2011, 71, 1867–1872. [Google Scholar] [CrossRef]
- Scaffaro, R.; Lopresti, F.; Botta, L. PLA based biocomposites reinforced with Posidonia oceanica leaves. Compos. Part B Eng. 2018, 139, 1–11. [Google Scholar] [CrossRef]
- Seggiani, M.; Cinelli, P.; Mallegni, N.; Balestri, E.; Puccini, M.; Vitolo, S.; Lardicci, C.; Lazzeri, A. New bio-composites based on polyhydroxyalkanoates and Posidonia oceanica fibres for applications in a marine environment. Materials 2017, 10, 326. [Google Scholar] [CrossRef]
- Norizan, M.N.; Shazleen, S.S.; Alias, A.H.; Sabaruddin, F.A.; Asyraf, M.R.M.; Zainudin, E.S.; Abdullah, N.; Samsudin, M.S.; Kamarudin, S.H.; Norrrahim, M.N.F. Nanocellulose-based nanocomposites for sustainable applications: A review. Nanomaterials 2022, 12, 3483. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, R.A.; Sapuan, S.M.; Ibrahim, R.; Atikah, M.S.N.; Atiqah, A.; Ansari, M.N.M.; Norrahim, M.N.F. Production, processes and modification of nanocrystalline cellulose from agro-waste: A review. In Nanocrystalline Materials; Movahedi, B., Ed.; IntechOpen: London, UK, 2019; pp. 3–32. [Google Scholar] [CrossRef]
- Mirpoor, S.F.; Giosafatto, C.V.L.; Di Pierro, P.; Di Girolamo, R.; Regalado-González, C.; Porta, R. Valorisation of Posidonia oceanica sea balls (egagropili) as a potential source of reinforcement agents in protein-based biocomposites. Polymers 2020, 12, 278. [Google Scholar] [CrossRef]
- Tarchoun, A.F.; Trache, D.; Klapötke, T.M. Microcrystalline cellulose from Posidonia oceanica brown algae: Extraction and characterization. Int. J. Biol. Macromol. 2019, 138, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Luzi, F.; Fortunati, E.; Puglia, D.; Petrucci, R.; Kenny, J.M.; Torre, L. Modulation of acid hydrolysis reaction time for the extraction of cellulose nanocrystals from Posidonia oceanica leaves. J. Renew. Mater. 2016, 4, 190–198. [Google Scholar] [CrossRef]
- Fortunati, E.; Luzi, F.; Puglia, D.; Petrucci, R.; Kenny, J.M.; Torre, L. Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: Innovative reuse of coastal plant. Ind. Crops Prod. 2015, 67, 439–447. [Google Scholar] [CrossRef]
- Saito, T.; Nishiyama, Y.; Putaux, J.L.; Vignon, M.; Isogai, A. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 2006, 7, 1687–1691. [Google Scholar] [CrossRef] [PubMed]
- Khadraoui, M.; Khiari, R.; Brosse, N.; Bergaoui, L.; Mauret, E. Combination of Steam Explosion and TEMPO-mediated Oxidation as Pretreatments to Produce Nanofibril of Cellulose from Posidonia oceanica Bleached Fibres. BioResources 2022, 17, 2933–2958. [Google Scholar] [CrossRef]
- Bettaieb, F.; Khiari, R.; Dufresne, A.; Mhenni, M.F.; Putaux, J.L.; Boufi, S. Nanofibrillar cellulose from Posidonia oceanica: Properties and morphological features. Ind. Crops Prod. 2015, 72, 97–106. [Google Scholar] [CrossRef]
- Bettaieb, F.; Khiari, R.; Dufresne, A.; Mhenni, M.F.; Belgacem, M.N. Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohydr. Polym. 2015, 123, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Scaffaro, R.; Maio, A.; Gulino, E.F.; Pitarresi, G. Lignocellulosic fillers and graphene nanoplatelets as hybrid reinforcement for polylactic acid: Effect on mechanical properties and degradability. Compos. Sci. Technol. 2020, 190, 108008. [Google Scholar] [CrossRef]
- Fragassa, C.; Latini, M.; Mattiello, S.; Pesic, A.; Santulli, C. Use of Adriatic Sea marine originated material in biocomposites with epoxy resin. Stud. Mar. 2024, 37, 24–32. [Google Scholar] [CrossRef]
- Fabra, M.J.; Seba-Piera, I.; Talens-Perales, D.; López-Rubio, A.; Polaina, J.; Marín-Navarro, J. Revalorization of cellulosic wastes from Posidonia oceanica and Arundo donax as catalytic materials based on affinity immobilization of an engineered β-galactosidase. Food Hydrocoll. 2020, 103, 105633. [Google Scholar] [CrossRef]
- Spyrou, A.V.; Tantis, I.; Baikousi, M.; Bourlinos, A.B.; Salmas, C.E.; Zboril, R.; Karakassides, M.A. The use of activated bio-carbon derived from “Posidonia oceanica” sea-waste for Lithium-Sulfur batteries development. Sustain. Energy Technol. Assess. 2022, 53, 102748. [Google Scholar] [CrossRef]
- Restaino, O.F.; Scognamiglio, M.; Mirpoor, S.F.; Cammarota, M.; Ventriglia, R.; Giosafatto, C.V.L.; Fiorentino, A.; Porta, R.; Schiraldi, C. Enhanced Streptomyces roseochromogenes melanin production by using the marine renewable source Posidonia oceanica egagropili. Appl. Microbiol. Biotechnol. 2022, 106, 7265–7283. [Google Scholar] [CrossRef] [PubMed]
- Meder, F.; Giordano, G.; Armiento, S.; Mazzolai, B. Underwater light modulators: Iridescent structures of the seagrass Posidonia oceanica. In Proceedings of the Conference on Biomimetic and Biohybrid Systems, Genoa, Italy, 19–22 July 2022; Springer International Publishing: Cham, Switzerland, 2022; pp. 297–308. [Google Scholar] [CrossRef]
Location | Indications | Ref. |
---|---|---|
Nueva Tabarca Island (Alicante, Spain) | The material of the banquette, if not consumed by terrestrial detritivores, would be exported further away inshore, possibly being mixed, if not contaminated, with other materials | [30] |
Calabria (Italy) | Passing from simple beach litter removal to maintenance would reduce wave energy and the erosion process | [31] |
Zarzis (Tunisia) | Repositioning of the banquettes as a good practice needs to be planned and executed appropriately so as not to push it to the extremes of the beaches, therefore practically impeding its preservation | [32] |
Sinus Peninsula (Sardinia, Italy) | Banquette removal leads to silicate and carbonate sediment loss and reduces both the barrier’s thickness and the beach’s resilience to storm events | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fragassa, C.; Pesic, A.; Mattiello, S.; Pavlovic, A.; Santulli, C. Exploring the Potential of Posidonia oceanica Fibers in Eco-Friendly Composite Materials: A Review. J. Mar. Sci. Eng. 2025, 13, 177. https://doi.org/10.3390/jmse13010177
Fragassa C, Pesic A, Mattiello S, Pavlovic A, Santulli C. Exploring the Potential of Posidonia oceanica Fibers in Eco-Friendly Composite Materials: A Review. Journal of Marine Science and Engineering. 2025; 13(1):177. https://doi.org/10.3390/jmse13010177
Chicago/Turabian StyleFragassa, Cristiano, Ana Pesic, Sara Mattiello, Ana Pavlovic, and Carlo Santulli. 2025. "Exploring the Potential of Posidonia oceanica Fibers in Eco-Friendly Composite Materials: A Review" Journal of Marine Science and Engineering 13, no. 1: 177. https://doi.org/10.3390/jmse13010177
APA StyleFragassa, C., Pesic, A., Mattiello, S., Pavlovic, A., & Santulli, C. (2025). Exploring the Potential of Posidonia oceanica Fibers in Eco-Friendly Composite Materials: A Review. Journal of Marine Science and Engineering, 13(1), 177. https://doi.org/10.3390/jmse13010177