Dynamics of Small-Scale Topographic Heterogeneity in European Sandy Salt Marshes
Abstract
:1. Introduction
2. Methods
2.1. Study Sites
2.2. Patterns in Soil Morphology
2.3. Coarse-Grained vs. Fine-Grained Heterogeneity in Four Sandy Marshes
2.4. Marsh Accretion Rates during Marsh Development
2.5. Data Analysis
3. Results
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hooper, D.U.; Chapin, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, S.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef] [Green Version]
- Ricklefs, R.E. Environmental heterogeneity and plant species diversity: A hypothesis. Am. Nat. 1977, 111, 376–381. [Google Scholar] [CrossRef]
- Costanza, J.K.; Moody, A.; Peet, R.K. Multi-scale environmental heterogeneity as a predictor of plant species richness. Landsc. Ecol. 2011, 26, 851–864. [Google Scholar] [CrossRef]
- Snyder, R.E.; Chesson, P. How the spatial scales of dispersal, competition, and environmental heterogeneity interact to affect coexistence. Am. Nat. 2004, 164, 633–650. [Google Scholar] [CrossRef] [PubMed]
- Godfree, R.; Lepschi, B.; Reside, A.; Bolgers, T.; Robertson, B.; Marshall, D.; Carnegie, M. Multiscale topoedaphic heterogeneity increases resilience and resistance of a dominant grassland species to extreme drought and climate change. Glob. Change Biol. 2011, 17, 943–958. [Google Scholar] [CrossRef]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; Ferreira de Siqueira, M.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzgerald, D.M.; Fenster, M.S.; Argow, B.A.; Buynevich, I.V. Coastal impacts due to sea-level rise. Annu. Rev. Earth Planet. Sci. 2008, 36, 601–647. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Guntenspergen, G.R.; D’Alpaos, A.; Morris, J.T.; Mudd, S.M.; Temmerman, S. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 2010, 37, L23401. [Google Scholar] [CrossRef]
- Olff, H.; de Leeuw, J.; Bakker, J.P.; Platerink, R.J.; van Wijnen, H.J. Vegetation succession and herbivory in a salt marsh: Changes induced by sea level rise and silt deposition along an elevational gradient. J. Ecol. 1997, 85, 799–814. [Google Scholar] [CrossRef]
- Peralta, G.; van Duren, L.A.; Morris, E.P.; Bouma, T.J. Consequences of shoot density and stiffness for ecosystem engineering by benthic macrophytes in flow dominated areas: A hydrodynamic flume study. Mar. Ecol. Progr. Ser. 2008, 368, 103–115. [Google Scholar] [CrossRef]
- Mudd, S.M.; D’Alpaos, A.; Morris, J.T. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. J. Geophys. Res. 2010, 115, 1–14. [Google Scholar] [CrossRef]
- Day, J.W.; Kemp, G.P.; Reed, D.J.; Cahoon, D.R.; Boumans, R.M.J.; Suhayda, J.M.; Gambrell, R. Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: The role of sedimentation, autocompaction and sea-level rise. Ecol. Eng. 2011, 37, 229–240. [Google Scholar] [CrossRef]
- Temmerman, S.; Bouma, T.J.; van de Koppel, J.; van der Wal, D.; de Vries, M.B.; Herman, P.M.J. Vegetation causes channel erosion in a tidal landscape. Geology 2007, 35, 631–634. [Google Scholar] [CrossRef]
- Fagherazzi, S.; Kirwan, M.L.; Mudd, S.M.; Guntenspergen, G.T.; Temmerman, S.; D’Alpaos, A.; van de Koppel, J.; Rybczyk, J.M.; Reyes, E.; Craft, C.; et al. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Rev. Geophys. 2012, 50, RG1002. [Google Scholar] [CrossRef]
- Vandenbruwaene, W.; Bouma, T.J.; Meire, P.; Temmerman, S. Bio-geomorphic effects on tidal channel evolution: Impact of vegetation establishment and tidal prism change. Earth Surf. Process. Landf. 2013, 38, 122–132. [Google Scholar] [CrossRef]
- Gray, A.J.; Bunce, R.G.H. The ecology of Morecambe Bay. VI. Soils and vegetation of the salt marshes: A multivariate approach. J. Appl. Ecol. 1972, 9, 221–234. [Google Scholar] [CrossRef]
- Langlois, E.; Bonis, A.; Bouzillé, J.B. Sediment and plant dynamics in saltmarshes pioneer zone: Puccinellia maritima as a key species? Estuar. Coast. Shelf Sci. 2003, 56, 239–249. [Google Scholar] [CrossRef]
- Stribling, J.; Cornwell, J.; Glahn, O. Microtopography in tidal marshes: Ecosystem enginering by vegetation? Estuar. Coasts 2007, 30, 1007–1015. [Google Scholar] [CrossRef]
- Balke, T.; Klaassen, P.C.; Garbutt, A.; van der Wal, D.; Herman, P.M.J.; Bouma, T.J. Conditional outcome of ecosystem engineering: A case study on tussocks of the salt marsh pioneer Spartina anglica. Geomorphology 2012, 153–154, 232–238. [Google Scholar] [CrossRef]
- Oliver, F.W. The Bouche d’Erqui in 1907. New Phytol. 1907, 6, 244–252. [Google Scholar]
- Yapp, R.H.; John, D.; Jones, O.T. The salt marshes of the Dovey Estuary. Part II. The salt marshes. J. Ecol. 1917, 5, 65–103. [Google Scholar] [CrossRef]
- De Groot, A.V.; Veeneklaas, R.M.; Kuijper, D.P.J.; Bakker, J.P. Spatial patterns in accretion on barrier-island salt marshes. Geomorphology 2011, 134, 280–296. [Google Scholar] [CrossRef]
- Packham, J.R.; Liddle, M.J. The Cefni salt marsh, Anglesey, and its recent development. Field Stud. 1970, 3, 331–356. [Google Scholar]
- Boumans, R.M.J.; Day, J.W. High precision measurements of sediment elevation in shallow coastal areas using a sedimentation-erosion table. Estuaries 1993, 16, 375–380. [Google Scholar] [CrossRef]
- Nolte, S.; Koppenaal, E.C.; Esselink, P.; Dijkema, K.S.; Schuerch, M.; de Groot, A.V.; Bakker, J.P.; Temmerman, S. Measuring sedimentation in tidal marshes: A review on methods and their applicability in biogeomorphological studies. J. Coast. Conserv. 2013, 17, 301–325. [Google Scholar] [CrossRef]
- Davy, A.J.; Brown, M.J.H.; Mossman, H.L.; Grant, A. Colonization of a newly developing salt marsh: Disentangling independent effects of elevation and redox potential on halophytes. J. Ecol. 2011, 99, 1350–1357. [Google Scholar] [CrossRef]
- Van Wijnen, H.J.; Bakker, J.P. Nitrogen accumulation and plant species replacement in three salt marsh systems in the Wadden Sea. J. Coast. Conserv. 1997, 3, 19–26. [Google Scholar] [CrossRef]
- Oenema, O.; Delaune, R.D. Accretion rates in salt marshes in the Eastern Scheldt, south-west Netherlands. Estuar. Coast. Shelf Sci. 1988, 26, 379–394. [Google Scholar] [CrossRef]
- Dijkema, K.S.; Kers, A.S.; van Duin, W.E. Salt marshes: Applied long-term monitoring salt marshes. In Wadden Sea Ecosystem No. 26; Trilateral Monitoring and Assessment Group, Common Wadden Sea Secretariat: Wilhelmshaven, Germany, 2010; Volume 26, pp. 35–40. [Google Scholar]
- Suchrow, S.; Pohlmann, N.; Stock, M.; Jensen, K. Long-term surface elevation changes in German North Sea salt marshes. Estuar. Coast. Shelf Sci. 2012, 98, 71–83. [Google Scholar] [CrossRef]
- Van Wesenbeeck, B.K.; van de Koppel, J.; Herman, P.M.J.; Bouma, T.J. Does scale-dependent feedback explain spatial complexity in salt-marsh ecosystems? Oikos 2008, 117, 152–159. [Google Scholar] [CrossRef]
- Langlois, E.; Bonis, A.; Bouzillé, J.B. The response of Puccinellia maritima to burial: A key to understanding its role in salt-marsh dynamics? J. Veg. Sci. 2001, 12, 289–297. [Google Scholar] [CrossRef]
- Scholten, M.; Rozema, J. The competitive ability of Spartina anglica on Dutch salt marshes. In Spartina Anglica, a Research Review; Gray, A.J., Benham, P.E.M., Eds.; Institute of Terrestrial Ecology: London, UK, 1990; pp. 39–47. [Google Scholar]
- Stein, A.; Gerstner, K.; Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 2014, 17, 866–880. [Google Scholar] [CrossRef] [PubMed]
- Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Elschot, K.; Bakker, J.P.; Temmerman, S.; van de Koppel, J.; Bouma, T.J. Ecosystem engineering by large grazers enhances carbon stocks in a tidal salt marsh. Mar. Ecol. Progr. Ser. 2015, 537, 9–21. [Google Scholar] [CrossRef]
- Gedan, K.B.; Kirwan, M.L.; Wolanski, E.; Barbier, E.B.; Silliman, B.R. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Clim. Change 2011, 106, 7–29. [Google Scholar] [CrossRef]
n | Tidal Range (m) | Most Dominant Plant Species | 2nd Most Dominant Plant Species | 3rd Most Dominant Plant Species | |
---|---|---|---|---|---|
Hummocks | |||||
Cefni marsh | 4.7 * | ||||
Pioneer zone | 95 | Puccinellia maritima | Bare soil | Armeria maritima | |
Marsh zone | 60 | Bare soil | Armeria maritima | Festuca rubra | |
Terschelling | 40 | 2 | Festuca rubra | Puccinellia maritima | |
Skallingen | 41 | 1.3 | Festuca rubra | Artiplex portulacoides | |
Schiermonnikoog | 2.3 | ||||
15 year-old marsh | 55 | Limonium vulgare | Festuca rubra | Atriplex portulacoides | |
30 year-old marsh | 55 | Festuca rubra | |||
45 year-old marsh | 62 | Festuca rubra | Artemisia maritima | Puccinellia maritima | |
55 year-old marsh | 38 | Festuca rubra | Artemisia maritima | Elytrigia atherica | |
120 year-old marsh | 66 | Festuca rubra | Puccinellia maritima | Artemisia maritima | |
Depressions | |||||
Cefni marsh | 4.7 * | ||||
Pioneer zone | 95 | Bare soil | |||
Marsh zone | 60 | Bare soil | Puccinellia maritima | Plantago maritima | |
Terschelling | 40 | 2 | Limonium vulgare | Atriplex portulacoides | Aster tripolium |
Skallingen | 41 | 1.3 | Atriplex poartulacoides | ||
Schiermonnikoog | 2.3 | ||||
15 year-old marsh | 55 | Bare soil | Limonium vulgare | Atriplex portulacoides | |
30 year-old marsh | 55 | Limonium vulgare | Atriplex portulacoides | Bare soil | |
45 year-old marsh | 62 | Limonium vulgare | Salicornia europaea | Atriplex portulacoides | |
55 year-old marsh | 38 | Limonium vulgare | Atriplex portulacoides | Festuca rubra | |
120 year-old marsh | 66 | Atriplex poartulacoides | Festuca rubra | Salicornia europaea |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elschot, K.; Bakker, J.P. Dynamics of Small-Scale Topographic Heterogeneity in European Sandy Salt Marshes. J. Mar. Sci. Eng. 2016, 4, 21. https://doi.org/10.3390/jmse4010021
Elschot K, Bakker JP. Dynamics of Small-Scale Topographic Heterogeneity in European Sandy Salt Marshes. Journal of Marine Science and Engineering. 2016; 4(1):21. https://doi.org/10.3390/jmse4010021
Chicago/Turabian StyleElschot, Kelly, and Jan P. Bakker. 2016. "Dynamics of Small-Scale Topographic Heterogeneity in European Sandy Salt Marshes" Journal of Marine Science and Engineering 4, no. 1: 21. https://doi.org/10.3390/jmse4010021
APA StyleElschot, K., & Bakker, J. P. (2016). Dynamics of Small-Scale Topographic Heterogeneity in European Sandy Salt Marshes. Journal of Marine Science and Engineering, 4(1), 21. https://doi.org/10.3390/jmse4010021