Seasonal Variability of Wind Sea and Swell Waves Climate along the Canary Current: The Local Wind Effect
Abstract
:1. Introduction
2. Data and Methods
2.1. ERA-Interim
2.2. Buoy Data
2.3. Spectral Partition and Wave Parameters
2.4. Methodology
3. ERA-Interim Evaluation
4. Results
4.1. Wind Sea and Swell Wave Heights and Periods
4.2. Wind Sea and Swell Wave Energy
4.3. Wave-Field Characteristics
4.4. Intra-Annual Variability
5. Discussion and Conclusions
Acknowledgments
Conflicts of Interest
References
- Munk, W.H.; Miller, G.R.; Snodgrass, F.E.; Barber, N.F. Directional recording of swell from distant storms. Philos. Trans. R. Soc. Lond. 1963, A255, 505–584. [Google Scholar] [CrossRef]
- Young, I.R. Seasonal variability of the global ocean wind and wave climate. Int. J. Climatol. 1999, 19, 931–950. [Google Scholar] [CrossRef]
- Alves, J.H. Numerical modeling of ocean swell contributions to the global wind-wave Climate. Ocean Model. 2006, 11, 98–122. [Google Scholar] [CrossRef]
- Ardhuin, F.; Chapron, B.; Collard, F. Observation of swell dissipation across oceans. Geophys. Res. Lett. 2009, 36, L06607. [Google Scholar] [CrossRef]
- Semedo, A.; Sušelj, K.; Rutgersson, A. Variability of Wind Sea and Swell Waves in the North Atlantic Based on ERA-40 Reanalysis. In Proceedings of the 8th European Wave and Tidal Energy Conference 2008, Uppsala, Sweden, 7–10 September 2008. [Google Scholar]
- Semedo, A.; Rutgersson, A.; Sterl, A.; Sušelj, K. The global wave age climate. In Marine Engineering and Technology; Taylor and Francis Group: London, UK, 2012; pp. 539–543. [Google Scholar]
- Semedo, A.; Sušelj, K.; Rutgersson, A.; Sterl, A. A global view on the wind sea and swell climate and variability from ERA-40. J. Clim. 2011, 24, 1461–1479. [Google Scholar] [CrossRef]
- Hanley, K.E.; Belcher, S.E.; Sullivan, P.R. A global climatology of wind-wave interaction. J. Phys. Ocanogr. 2010, 40, 1263–1282. [Google Scholar] [CrossRef]
- Chen, G.; Chapron, B.; Ezraty, R.; Vandemark, D. A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer. J. Atmos. Ocean Technol. 2001, 19, 1849–1859. [Google Scholar] [CrossRef]
- Gulev, S.; Grigorieva, V. Variability of the winter wind waves and swell in the North Atlantic and North Pacific as revealed by the voluntary observing ship data. J. Clim. 2006, 19, 5667–5685. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, G. A global view on the swell and wind sea climate by the Jason-1 mission: A revisit. J. Atmos. Ocean. Technol. 2013, 30, 1833–1841. [Google Scholar] [CrossRef]
- Carrasco, A.; Semedo, A.; Isachsen, P.E.; Christensen, K.H.; Saetra, Ø. Global surface wave drift climate from ERA-40: The contributions from wind-sea and swell. Ocean Dyn. 2014, 64, 1815–1829. [Google Scholar]
- Rutgerson, A.; Saetra, Ø.; Semedo, A.; Carlson, B.; Kumar, R. Impact of surface waves in a Regional Climate Model. Meteorol. Z. 2010, 19, 247–257. [Google Scholar] [CrossRef]
- Semedo, A.; Sætra, Ø.; Rutgersson, A.; Kahma, K.K.; Pettersson, H. Wave induced wind in the marine boundary layer. J. Atmos. Sci. 2009, 66, 2256–2271. [Google Scholar] [CrossRef]
- Smedman, A.-S.; Högström, U.; Sahleé, E.; Drennan, W.M.; Kahama, K.K.; Pettersson, H.; Zhang, F. Observational study of marine atmospheric boundary layer characteristics during swell. J. Atmos. Sci. 2009, 66, 2747–2763. [Google Scholar] [CrossRef]
- Högström, U.; Smedman, A.-S.; Semedo, A.; Rutgersson, A. Comments on “A global climatology of windwave interaction”. J. Phys. Oceanogr. 2011, 41, 1811–1813. [Google Scholar] [CrossRef]
- Högström, U.; Rutgersson, A.; Sahlée, E.; Smedman, A.-S.; Hristov, T.S.; Drennan, W.M.; Kahma, K.K. Air–Sea interaction features in the Baltic Sea and at a Pacific trade-wind site: An inter-comparison study. Bound.-Layer Meteorol. 2013, 147, 139–163. [Google Scholar] [CrossRef]
- Potter, H. Swell and the drag coefficient. Ocean Dyn. 2015, 65, 375–384. [Google Scholar] [CrossRef]
- Babanin, A.V.; Onorato, M.; Qiao, F. Surface waves and wave-coupled effects in lower atmosphere and upper ocean. J. Geophys. Res. 2012, 117, C00J01. [Google Scholar] [CrossRef]
- Cavaleri, L.; Fox-Kemper, B.; Hemer, M. Wind waves in the coupled climate system. Bull. Am. Meteorol. Soc. 2012, 93, 1651–1661. [Google Scholar] [CrossRef]
- Sullivan, P.P.; Edson, J.B.; Hristov, T.; McWilliams, J.C. Large-eddy Simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J. Atmos. Sci. 2008, 65, 1225–1254. [Google Scholar] [CrossRef]
- Högström, U.; Smedman, A.-S.; Sahlée, E.; Drennan, W.M.; Kahma, K.K.; Johansson, C.; Pettersson, H.; Zhang, F. The atmospheric boundary layer during swell—A field study of the governing mechanism. J. Atmos. Sci. 2009, 66, 2764–2779. [Google Scholar] [CrossRef]
- Smedman, A.-S.; Högström, U.; Bergström, H.; Rutgersson, A.; Kahma, K.K.; Pettersson, H. A case-study of air-sea interaction during swell conditions. J. Geophys. Res. 1999, 104, 25833–25851. [Google Scholar] [CrossRef]
- Stokes, G. On the theory of oscillatory waves. Trans. Camb. Philos. Soc. 1847, 8, 441. [Google Scholar]
- McWilliams, J.; Restrepo, J. The wave-driven ocean circulation. J. Phys. Oceanogr. 1999, 29, 2523–2540. [Google Scholar] [CrossRef]
- Semedo, A.; Vettor, R.; Breivik, Ø.; Sterl, A.; Reistad, M.; Soares, C.G.; Lima, D. The wind sea and swell waves climate in the Nordic seas. Ocean Dyn. 2014, 65, 223–240. [Google Scholar] [CrossRef]
- Onorato, M.; Waseda, T.; Toffoli, A.; Cavaleri, L.; Gramstad, O.; Janssen, P.A.E.M.; Kinoshita, T.; Monbaliu, J.; Mori, N.; Osborne, A.R.; et al. On the statistical properties of directional ocean waves: The role of the modulational instability in the formation of extreme events. Phys. Rev. Lett. 2009, 102, 114502. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.R.; Jacobs, M.M. Albedo of the ocean-atmosphere system: Influence of sea foam. Appl. Opt. 1977, 16, 2257–2260. [Google Scholar] [CrossRef] [PubMed]
- Frouin, R.; Iacobellis, S.F.; Deschamps, P.-Y. Influence of oceanic whitecaps on the global radiation budget. Geophys. Res. Lett. 2001, 28, 1523–1526. [Google Scholar] [CrossRef]
- Holthuijse, L.H. Waves in Oceanic and Coastal Waters; Cambridge University Press: Cambridge, UK, 2008; p. 387. [Google Scholar]
- Gerling, T.W. Partitioning sequences and arrays of directional wave spectra into component wave systems. J. Atmos. Ocean. Technol. 1992, 9, 444–458. [Google Scholar] [CrossRef]
- Hanson, J.L.; Phillips, O.M. Automated analysis of ocean surface directional wave spectra. J. Atmos. Ocean. Technol. 2001, 18, 277–293. [Google Scholar] [CrossRef]
- Kumar, N.; Cahl, D.L.; Crosby, S.C.; Voulgaris, G. Bulk versus spectral wave parameters: Implications on stokes drift estimates, regional wave modeling, and HF radars applications. J. Phys. Oceanogr. 2017, 43, 1413–1431. [Google Scholar] [CrossRef]
- Hegermiller, C.A.; Rueda, A.; Erikson, L.H.; Barnard, P.L.; Antolinez, J.A.A.; Mendez, F.J. Controls of multimodal wave conditions in a complex coastal setting. Geophys. Res. Lett. 2017, 44, 12315–12323. [Google Scholar] [CrossRef]
- Young, I.R.; Zieger, S.; Babanin, A.V. Global Trends in Wind Speed and Wave Height. Science 2011, 332, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Pandian, P.K.; Emmanuel, O.; Ruscoe, J.P.; Side, J.C.; Harris, R.E.; Kerr, S.A.; Bullen, C.R. An overview of recent technologies on wave and current measurement in coastal and marine applications. J. Oceanogr. Mar. Sci. 2011, 1, 001–010. [Google Scholar]
- Sterl, A. On the (in-)homogeneity of reanalysis products. J. Clim. 2004, 17, 3866–3873. [Google Scholar] [CrossRef]
- Aarnes, O.J.; Abdalla, S.; Bidlot, J.-R.; Breivik, Ø. Marine Wind and Wave Height Trends at Different ERA-Interim Forecast Ranges. J. Clim. 2015, 28, 819–837. [Google Scholar] [CrossRef] [Green Version]
- Ranjha, R.; Svensson, G.; Tjernström, M.; Semedo, A. Global distribution and seasonal variability of coastal low-level jets derived from ERA-Interim reanalysis. Tellus A 2013, 65, 20412. [Google Scholar] [CrossRef] [Green Version]
- Lima, D.C.A.; Soares, P.M.M.; Cardoso, C.R.; Semedo, A. A Global View of Coastal Low-Level Wind Jets using an Ensemble of Reanalysis. J. Clim. 2018, 4, 1525–1546. [Google Scholar] [CrossRef]
- Winant, C.D.; Dorman, C.E.; Friehe, C.A.; Beardsley, R.C. The marine layer off northern California: An example of supercritical channel flow. J. Atmos. Sci. 1988, 45, 3588–3605. [Google Scholar] [CrossRef]
- Vallis, G.K. Large-scale Circulation and Production of Stratification: Effects of Wind, Geometry and Difusion. J. Phys. Oceanogr. 2000, 30, 933–954. [Google Scholar] [CrossRef]
- Barton, E.D.; Field, D.B.; Roy, C. Canary current upwelling: More or less? Prog. Oceanogr. 2013, 116, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Tuomi, L.; Kahma, K.K.; Pettersson, K. Wave hindcast statistics in the seasonally ice covered Baltic Sea. Boreal Environ. Res. 2011, 16, 451–472. [Google Scholar]
- Galanis, G.; Hayes, D.; Zodiatis, G.; Chu, P.C.; Kuo, Y.-H.; Kallos, G. Wave height characteristics in the Mediterranean Sea by means of numerical modeling, satellite data, statistical and geometrical techniques. Mar. Geophys. Res. 2015, 33, 55–76. [Google Scholar] [CrossRef] [Green Version]
- Beardsley, R.C.; Dorman, C.E.; Friehe, C.A.; Rosenfield, L.K.; Wyant, C.D. Local atmospheric forcing during the Coastal Ocean Dynamics Experiment 1: A description of the marine boundary layer and atmospheric conditions over a northern California upwelling region. J. Geophys. Res. 1987, 92, 1467–1488. [Google Scholar] [CrossRef]
- Bakun, A. Global Climate Change and Intensification of Coastal Ocean Upwelling. Science 1990, 247, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Small, C.; Nicholls, R.J. A global analysis of human settlement in coastal zones. J. Coast. Res. 2003, 19, 584–599. [Google Scholar]
- Narayan, N.; Paul, A.; Mulitza, S.; Schulz, M. Trends in Coastal Upwelling Intensity. Ocean Sci. 2010, 6, 815–823. [Google Scholar] [CrossRef] [Green Version]
- Miranda, P.M.A.; Alves, J.M.R.; Serra, N. Climate Change and Upwelling: Response of Iberian Upwelling to Atmospheric Forcing in a Regional Climate Scenario. Clim. Dyn. 2013, 40, 2813–2824. [Google Scholar] [CrossRef]
- Montagne, R.; de la Prédiction, L.S.; de la Houle, M. Annales Hydrographiques; Imprimerie Nationale: Paris, France, 1922; pp. 157–186. [Google Scholar]
- Mekadem, N.E.; Moutchou, M.E.B.E.; Bernabeu, A.M.; Hajjaji, K.E. Grain Size Analysis and Wave Modeling on the Coastal. J. Shipp. Ocean Eng. 2012, 2, 244–248. [Google Scholar]
- Soares, P.M.M.; Cardoso, R.; Semedo, A.; Chinita, M.J.; Ranjha, R. The Iberian Peninsula Coastal Low Level Jet. Tellus A 2014, 66, 22377. [Google Scholar] [CrossRef]
- Rijo, N.; Semedo, A.; Miranda, P.M.A.; Lima, D.C.A.; Cardoso, R.M.; Soares, P.M.M. Spatial and Temporal Variability of the Iberian Peninsula Coastal Low-Level Jet. Int. J. Climatol. 2017, 38, 1605–1622. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Janssen, P.A.E.M. The Interaction of Ocean Waves and Wind; Cambridge University Press: Cambridge, UK, 2004; p. 300. [Google Scholar]
- WAMDI Group. The WAM model—A third generation oceanwave prediction model. J. Phys. Oceanogr. 1988, 18, 1775–1810. [Google Scholar]
- Dee, D.P.; Uppala, S. Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Q. J. R. Meteorol. Soc. 2009, 135, 1830–1841. [Google Scholar] [CrossRef]
- Stopa, J.; Cheung, K.F. Intercomparison of wind and wave data from the ECMWF Reanalysis Interim and the NCEP Climate ForecastSystem Reanalysis. Ocean Model. 2014, 75, 65–83. [Google Scholar] [CrossRef]
- Pierson, W.J.; Moskowitz, L. A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigorodskii. J. Geophys. Res. 1964, 69, 5181–5190. [Google Scholar] [CrossRef]
- Alves, J.H.; Banner, M.L.; Young, I.R. Revisiting the Pierson-Moskowitz asymptotic limits for fully developed wind waves. J. Phys. Oceanogr. 2003, 33, 1301–1323. [Google Scholar] [CrossRef]
- Bidlot, J.-R. ECMWF Wave Model Products; ECMWF Newsletter, No. 91; ECMWF: Reading, UK, 2001; pp. 9–15. [Google Scholar]
- Sterl, A.; Caires, S. Climatology, variability and extrema of ocean waves: The Web-based KNMI/ERA-40 wave atlas. Int. J. Climatol. 2005, 25, 963–997. [Google Scholar] [CrossRef]
- Holt, T.R. Mesoscale forcing of a boundary layer jet along the California coast. J. Geophys. Res. 1996, 101, 4235–4254. [Google Scholar] [CrossRef]
- Parish, T.R. Forcing of the summertime low-level jet along the California coast. J. Appl. Meteorol. 2000, 39, 2421–2433. [Google Scholar] [CrossRef]
- Jiang, Q.; Wang, S.; O’Neill, L. Some insights into the characteristics and dynamics of the Chilean Low-Level Coastal Jet. Mon. Weather Rev. 2010, 138, 3185–3206. [Google Scholar] [CrossRef]
- Nicholson, S.E. A low-level jet along the Benguela coast, an integral part of the Benguela current ecosystem. Clim. Chang. 2010, 99, 613–624. [Google Scholar] [CrossRef]
- Burk, S.D.W.T. Thompson, The summertime low-level jet and marine boundary layer structure along the California coast. Mon. Weather Rev. 1996, 124, 668–686. [Google Scholar] [CrossRef]
- Zemba, J.; Friehe, C.A. The marine boundary layer jet in the coastal ocean dynamics experiment. J. Geophys. Res. 1987, 92, 1489–1496. [Google Scholar] [CrossRef]
- Ranjha, R.; Tjernström, M.; Semedo, A.; Svensson, G.; Cardoso, R.M. Structure and Variability of the Oman Coastal Low-Level Jet. Tellus A 2015, 67, 25285. [Google Scholar] [CrossRef]
- Semedo, A.; Soares, P.M.M.; Lima, D.C.A.; Cardoso, R.M.; Bernardino, M.; Miranda, P.M.A. The impact of Climate Change on the Global Coastal Low-Level Wind Jets: EC-EARTH simulations. Glob. Planet. Chang. 2016, 137, 88–106. [Google Scholar] [CrossRef]
- Rijo, N.; Lima, D.C.A.; Semedo, A.; Miranda, P.M.A.; Cardoso, R. The Iberian Peninsula low-level coastal jet: Climatology and case study analysis. In Proceedings of the 10th Jornadas do Mar 2014, Lisbon, Portugal, 11–14 November 2014. [Google Scholar]
- Tjernström, M.; Grisogono, B. Simulations of supercritical flow around points and capes in the coastal atmosphere. J. Atmos. Sci. 2000, 57, 108135. [Google Scholar] [CrossRef]
- Hurrell, J.W. Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett. 1996, 23, 665–668. [Google Scholar] [CrossRef]
- Luo, D.; Diao, Y.; Feldstein, S.B. The variability of the atlantic storm track and the North Atlantic Oscillation: A link between intraseasonal and interannual variability. J. Atmos. Sci. 2011, 68, 577–601. [Google Scholar] [CrossRef]
- Semedo, A. The North Atlantic Oscillation Influence on the Wave Regime in Portugal: An Extreme Event Analysis. Master’s Thesis, Meteorology Naval Postgraduate School, Monterey, CA, USA, 2005. [Google Scholar]
- Sempreviva, A.M.; Schiano, M.E.; Pensieri, S.; Bozzano, R.; Borghini, M.; Grasso, F.; Semedo, A.; Soerensen, L.-L.; Teixeira, J.; Transerici, C.; et al. Observed development of the vertical structure of the marine boundary layer during the LASIE experiment in the Ligurian Sea. Ann. Geophys. 2010, 28, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Peliz, A.; Dubert, J.; Marchesiello, P.; Teles-Machado, A. Surface circulation in the Gulf of Cadiz: Model and mean flow structure. J. Geophys. Res. 2007, 112, C11015. [Google Scholar] [CrossRef]
- Reguero, B.G.; Losada, I.J.; Méndez, F.J. A global wave power resource and its seasonal, interannual and long-term variability. Appl. Energy 2015, 148, 366–380. [Google Scholar] [CrossRef]
- Bromirski, P.D.; Cayan, D.R. Wave power variability and trends across the North Atlantic influenced by decadal climate patterns. J. Geoph. Res. 2015, 120, 3419–3443. [Google Scholar] [CrossRef]
- Jeffreys, H. On the formation of waves by wind. Proc. R. Soc. 1924, A107, 189–206. [Google Scholar]
- Jeffreys, H. On the formation of waves by wind. II. Proc. R. Soc. 1925, A110, 341–347. [Google Scholar]
- Smith, S.D.; Anderson, R.J.; Oost, W.A. Coauthors Sea surface wind stress and drag coefficients: The HEXOS results. Bound.-Layer Meteorol. 1992, 60, 109–142. [Google Scholar] [CrossRef]
- Rijo, N.; Semedo, A.; Lima, D.C.A.; Miranda, P.M.A.; Cardoso, R.; Soares, P.M.M. The Northerly Summer Wind off the West Coast of the Iberian Peninsula. In Proceedings of the TransNav 2015—International Conference on Marine Navigation and Safety of Sea Transportation, Gdynia, Poland, 17–19 June 2015. [Google Scholar]
- Ranjha, R.; Tjernström, M.; Svensson, G.; Semedo, A. Modeling Coastal Low-Level Wind-Jets: Does horizontal resolution matter? Met. Atmos. Phys. 2015, 128, 263–278. [Google Scholar] [CrossRef]
- Ardhuin, F.; Jenkins, A. On the Interaction of surface waves and upper ocean turbulence. J. Phys. Oceanogr. 2006, 33, 551–557. [Google Scholar] [CrossRef]
- Semedo, A.; Weisse, R.; Beherens, A.; Sterl, A.; Bengtsson, L.; Gunther, H. Projection of global wave climate change towards the end of the 21st century. J. Clim. 2013, 26, 8269–8288. [Google Scholar] [CrossRef]
- Cardoso, R.M.; Soares, P.M.M.; Lima, D.C.A.; Semedo, A. The impact of Climate Change on the Iberian Low-Level Wind Jet: EURO-CORDEX—Regional climate simulation. Tellus 2015, 68, 29005. [Google Scholar] [CrossRef]
- Soares, P.M.M.; Lima, D.C.A.; Cardoso, R.M.; Semedo, A. High resolution projections for the western Iberian coastal low level jet in a changing climate. Clim. Dyn. 2017, 49, 1547. [Google Scholar] [CrossRef]
- Soares, P.M.M.; Lima, D.C.A.; Cardoso, R.M.; Nascimento, M.L.; Semedo, A. Western iberian offshore wind resources: More or less in a global warming climate? Appl. Energy 2017, 203, 72–90. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semedo, A. Seasonal Variability of Wind Sea and Swell Waves Climate along the Canary Current: The Local Wind Effect. J. Mar. Sci. Eng. 2018, 6, 28. https://doi.org/10.3390/jmse6010028
Semedo A. Seasonal Variability of Wind Sea and Swell Waves Climate along the Canary Current: The Local Wind Effect. Journal of Marine Science and Engineering. 2018; 6(1):28. https://doi.org/10.3390/jmse6010028
Chicago/Turabian StyleSemedo, Alvaro. 2018. "Seasonal Variability of Wind Sea and Swell Waves Climate along the Canary Current: The Local Wind Effect" Journal of Marine Science and Engineering 6, no. 1: 28. https://doi.org/10.3390/jmse6010028
APA StyleSemedo, A. (2018). Seasonal Variability of Wind Sea and Swell Waves Climate along the Canary Current: The Local Wind Effect. Journal of Marine Science and Engineering, 6(1), 28. https://doi.org/10.3390/jmse6010028