Significance of Fluvial Sediment Supply in Coastline Modelling at Tidal Inlets
Abstract
:1. Introduction
2. Methods
2.1. Sea-Level Rise-Driven Landward Movement of the Coastline
2.2. Basin Infilling due to Sea-Level Rise-Induced Increase in Accommodation Space
2.3. Basin Volume Change due to Variation in River Flow
2.4. Coastline Change due to Changes in Fluvial Sediment Supply
2.5. Factors Affecting Fluvial Sediment Supply to Coasts
2.6. Assessment of Fluvial Sediment Supply to Coasts
3. Model Applications and Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cowell, P.J.; Stive, M.J.F.; Niedoroda, A.W.; De-Vriend, H.J.; Swift, D.J.P.; Kaminsky, G.M.; Capobianco, M. The Coastal-Tract (Part 1): A Conceptual Approach to Aggregated Modeling of Low-Order Coastal Change. J. Coast. Res. 2003, 19, 812–827. [Google Scholar]
- Green, M.O. Catchment sediment load limits to achieve estuary sedimentation targets. N. Z. J. Mar. Freshw. Res. 2013, 47, 153–180. [Google Scholar] [CrossRef] [Green Version]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef] [Green Version]
- Kettner, A.J.; Gomez, B.; Hutton, E.W.H.; Syvitski, J.P.M. Late Holocene dispersal and accumulation of terrigenous sediment on Poverty Shelf, New Zealand. Basin Res. 2009, 21, 253–267. [Google Scholar] [CrossRef] [Green Version]
- Shennan, I.; Coulthard, T.; Flather, R.; Horton, B.; Macklin, M.; Rees, J.; Wright, M. Integration of shelf evolution and river basin models to simulate Holocene sediment dynamics of the Humber Estuary during periods of sea-level change and variations in catchment sediment supply. Sci. Total Environ. 2003, 314–316, 737–754. [Google Scholar] [CrossRef]
- Smith, R.K. Poverty Bay, New Zealand: A case of coastal accretion 1886–1975. N. Z. J. Mar. Freshw. Res. 1988, 22, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.J.; Meybeck, M.; Fekete, B.; Sharma, K.; Green, P.; Syvitski, J.P.M. Anthropogenic sediment retention: Major global impact from registered river impoundments. Glob. Planet. Chang. 2003, 39, 169–190. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Duong, T.M.; Uhlenbrook, S.; Roelvink, D.; Stive, M. Climate-change impact assessment for inlet-interrupted coastlines. Nat. Clim. Chang. 2013, 3, 83–87. [Google Scholar] [CrossRef]
- Davis, R.A.; Hayes, M.O. What is a wave-dominated coast? Mar. Geol. 1984, 60, 313–329. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Bruun, P. Stability of Tidal Inlets—Theory and Engineering. Dev. Geotech. Eng. 1978, 23, 1–506. [Google Scholar]
- Syvitski, J.P.M.; Peckham, S.D.; Hilberman, R.; Mulder, T. Predicting the terrestrial flux of sediment to the global ocean: A planetary perspective. Sediment. Geol. 2003, 162, 5–24. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Milliman, J.D. Geology, Geography, and Humans Battle for Dominance over the Delivery of Fluvial Sediment to the Coastal Ocean. J. Geol. 2007, 115, 1–19. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Saito, Y. Morphodynamics of deltas under the influence of humans. Glob. Planet. Chang. 2007, 57, 261–282. [Google Scholar] [CrossRef]
- Overeem, I.; Kettner, A.J.; Syvitski, J.P.M. Impacts of Humans on River Fluxes and Morphology. Treatise Geomorphol. 2013, 9, 828–842. [Google Scholar] [CrossRef]
- Shrestha, B.; Babel, M.S.; Maskey, S.; van Griensven, A.; Uhlenbrook, S.; Green, A.; Akkharath, I. Impact of climate change on sediment yield in the Mekong River basin: A case study of the Nam Ou basin, Lao PDR. Hydrol. Earth Syst. Sci. 2013, 17, 1–20. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. IPCC 2013: Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Syvitski, J.P.M. Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, N.; Kolker, A.S.; Fagherazzi, S. Interplay between river discharge and tides in a delta distributary. Adv. Water Resour. 2015, 80, 69–78. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Kettner, A.J.; Correggiari, A.; Nelson, B.W. Distributary channels and their impact on sediment dispersal. Mar. Geol. 2005, 222–223, 75–94. [Google Scholar] [CrossRef]
- Balthazar, V.; Vanacker, V.; Girma, A.; Poesen, J.; Golla, S. Human impact on sediment fluxes within the Blue Nile and Atbara River basins. Geomorphology 2013, 180–181, 231–241. [Google Scholar] [CrossRef]
- Walling, D.E. Linking land use, erosion and sediment yields in river basins. Hydrobiologia 1999, 410, 223–240. [Google Scholar] [CrossRef]
- Bamunawala, J.; Ranasinghe, R.; van der Spek, A.; Maskey, S.; Udo, K. Assessing Future Coastline Change in the Vicinity of Tidal Inlets via Reduced Complexity Modelling. J. Coast. Res. 2018, 636–640. [Google Scholar] [CrossRef]
- Wildlife Conservation Society—WCS, and Center for International Earth Science Information Network—CIESIN—Columbia University. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic); NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2005.
- Sanderson, E.W.; Jaiteh, M.; Levy, M.; Redford, K.H.; Wannebo, A.V.; Woolmer, G. The Human Footprint and the Last of the Wild. Bioscience 2002, 52, 891–904. [Google Scholar] [CrossRef]
Parameter | Wilson Inlet | Swan River | Tu Hien Inlet | Thuan An Inlet |
---|---|---|---|---|
0.2 | 0.5 | 0.8 | 5.5 | |
23 | 23 | 25 | 25 | |
* | 2.4 | 2.6 | 15 | 47 |
* | 48 | 52 | 100 | 110 |
* | 85 | 312 | 122 | 178 |
* | 2263 | 121,000 | 600 | 3800 |
0.16 | 0.53 | 1.2 | 1.2 | |
** | 0.5 | 0.5 | 1.0 | 1.0 |
0.55 | 0.58 | 0.99 | 0.82 | |
* | 0.01 | 0.01 | 0.01 | 0.01 |
* | 20 | 20 | 15 | 15 |
* | 15 | 20 | 10 | 20 |
Parameter | Wilson Inlet | Swan River | Tu Hien Inlet | Thuan An Inlet |
---|---|---|---|---|
0.8 | 0.8 | 0.8 | 0.8 | |
4.8 | 4.8 | 4.8 | 4.8 | |
−30 | −30 | +15 | +15 | |
+20 | +20 | +20 | +20 |
Component | Potential Coastline Change (m) by 2100 | |||
---|---|---|---|---|
Wilson Inlet | Swan River | Tu Hien Inlet | Thuan An Inlet | |
80 | 80 | 80 | 80 | |
64 | 52 | 266 | 146 | |
9 | 48 | −4 | −7 | |
−1 | −12 | −37 | −71 | |
152 | 168 | 305 | 148 |
Component | Potential Coastline Change (m) by 2100 | ||||
---|---|---|---|---|---|
Wilson Inlet | Swan River | Tu Hien Inlet | Thuan An Inlet | ||
New RCM | −1 | −12 | −37 | −71 | |
SMIC | 0 | 0 | −2 | −7 | |
New RCM | 152 | 168 | 305 | 148 | |
SMIC | 153 | 180 | 340 | 212 | |
Difference in Total [New RCM—SMIC] | −1 (~0%) | −12 (−7%) | −35 (−10%) | −64 (−30%) |
Parameter | Component | Potential Coastline Change (m) by 2100 | |||
---|---|---|---|---|---|
Wilson Inlet | Swan River | Tu Hien Inlet | Thuan An Inlet | ||
Baseline Simulation | 152 | 168 | 305 | 148 | |
SMIC Results | 153 | 180 | 340 | 212 | |
~0 | −4 | −21 | −39 | ||
152 | 176 | 321 | 180 | ||
% Difference from BLS | - | 5% | 5% | 22% | |
−1 | −17 | −34 | −65 | ||
1 | 8 | −1 | −2 | ||
144 | 123 | 311 | 159 | ||
% Difference from BLS | −5% | −27% | 2% | 7% | |
~0 | −8 | −28 | −53 | ||
152 | 172 | 314 | 166 | ||
% Difference from BLS | - | 2% | 3% | 12% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bamunawala, J.; Maskey, S.; Duong, T.M.; Van der Spek, A. Significance of Fluvial Sediment Supply in Coastline Modelling at Tidal Inlets. J. Mar. Sci. Eng. 2018, 6, 79. https://doi.org/10.3390/jmse6030079
Bamunawala J, Maskey S, Duong TM, Van der Spek A. Significance of Fluvial Sediment Supply in Coastline Modelling at Tidal Inlets. Journal of Marine Science and Engineering. 2018; 6(3):79. https://doi.org/10.3390/jmse6030079
Chicago/Turabian StyleBamunawala, Janaka, Shreedhar Maskey, Trang Minh Duong, and Ad Van der Spek. 2018. "Significance of Fluvial Sediment Supply in Coastline Modelling at Tidal Inlets" Journal of Marine Science and Engineering 6, no. 3: 79. https://doi.org/10.3390/jmse6030079
APA StyleBamunawala, J., Maskey, S., Duong, T. M., & Van der Spek, A. (2018). Significance of Fluvial Sediment Supply in Coastline Modelling at Tidal Inlets. Journal of Marine Science and Engineering, 6(3), 79. https://doi.org/10.3390/jmse6030079