Potential Impacts of Sea Level Rise and Coarse Scale Marsh Migration on Storm Surge Hydrodynamics and Waves on Coastal Protected Areas in the Chesapeake Bay
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Sea Level Rise in the Study Areas
2.3. Marsh Migration—Potential Land Cover Changes
2.4. Modeling Storm Surge and Waves
2.5. Preserve Areas and Sea Level Rise in the Model
3. Results
3.1. Impacts of Sea-Level Rise on Flooding Extent
3.2. Impact of Sea-Level Rise on Maximum Water Levels
3.3. Impact of Sea-Level Rise on Currents Velocities
3.4. Impact of Sea-Level Rise on Wave Heights
4. Discussion and Implications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix
Land Cover Type | Class Number | Manning’s N | Surface Canopy Coefficient | Surface Directional Effective Roughness Length |
---|---|---|---|---|
Unclassified | 1 | 0 | 1 | 0 |
Developed, High Intensity | 2 | 0.12 | 1 | 0.3 |
Developed, Medium Intensity | 3 | 0.12 | 1 | 0.3 |
Developed, Low Intensity | 4 | 0.07 | 1 | 0.3 |
Developed, Open Space | 5 | 0.035 | 1 | 0.3 |
Cultivated Crops | 6 | 0.1 | 1 | 0.06 |
Pasture/Hay | 7 | 0.055 | 1 | 0.06 |
Grassland/Herbaceous | 8 | 0.035 | 1 | 0.04 |
Deciduous Forest | 9 | 0.16 | 0 | 0.65 |
Evergreen Forest | 10 | 0.18 | 0 | 0.72 |
Mixed Forest | 11 | 0.17 | 0 | 0.71 |
Scrub/Shrub | 12 | 0.08 | 1 | 0.12 |
Palustrine Forested Wetlands | 13 | 0.2 | 0 | 0.6 |
Palustrine Scrub/Shrub Wetlands | 14 | 0.075 | 1 | 0.11 |
Palustrine Emergent Wetlands | 15 | 0.07 | 1 | 0.3 |
Estuarine Forested Wetlands | 16 | 0.15 | 0 | 0.55 |
Estuarine Scrub/Shrub Wetlands | 17 | 0.07 | 1 | 0.12 |
Estuarine Emergent Wetlands | 18 | 0.05 | 1 | 0.3 |
Unconsolidated Shore | 19 | 0.03 | 1 | 0.09 |
Barren Land | 20 | 0.03 | 1 | 0.05 |
Open Water | 21 | 0.025 | 1 | 0.001 |
Palustrine Aquatic Bed | 22 | 0.035 | 1 | 0.04 |
Estuarine Aquatic Bed | 23 | 0.03 | 1 | 0.04 |
Irene | |||||
---|---|---|---|---|---|
Preserve Area | No SLR | 0.48 m | 0.97 m | 1.68 m | 2.31 m |
DM | 11.3 | 21.3 (10%) | 65.3 (54%) | 100 (88.7%) | 100 (88.7%) |
MGB | 67.7 | 70.9 (3.2%) | 74.3 (6.7%) | 78.9 (11.3%) | 83.4 (15.7%) |
ES | 39.7 | 42.6 (2.9%) | 45.2 (5.5%) | 47.9 (8.2%) | 50.7 (11%) |
MB | 100 | 100 (0%) | 100 (0%) | 100 (0%) | 100 (0%) |
Synthetic 145 | |||||
- | No SLR | 0.48 m | 0.97 m | 1.68 m | 2.31 m |
DM | 11.1 | 19.4 (8.3%) | 30.5 (19.4%) | 78.7 (67.7%) | 100 (88.9%) |
MGB | 42.8 | 59.1 (16.3%) | 64.1 (21.3%) | 70.2 (27.4%) | 73.4 (30.6%) |
ES | 18.2 | 24.0 (5.8%) | 34.6 (16.4%) | 43.1 (24.9%) | 46.2 (28%) |
MB | 99.3 | 99.9 (0.6%) | 100 (0.7%) | 100 (0.7%) | 100 (0.7%) |
Synthetic35 | |||||
- | No SLR | 0.48 m | 0.97 m | 1.68 m | 2.31 m |
DM | 8.08 | 15.2 (7.09%) | 22.5 (14.4%) | 58.6 (50.5%) | 100 (91.9%) |
MGB | 14.6 | 53.2 (38.6%) | 61.1 (46.5%) | 68.4 (53.8%) | 71.7 (57%) |
ES | 10.5 | 29.7 (19.1%) | 36 (25.5%) | 41.3 (30.8%) | 46.1 (35.5%) |
MB | 100 | 100 (0%) | 100 (0%) | 100 (0%) | 100 (0%) |
Irene | |||||
---|---|---|---|---|---|
Preserve Area | No SLR | 0.48 m | 0.97 m | 1.68 m | 2.31 m |
DM | 1.42 | 1.84 (29.5%) | 2.34 (65%) | 3.02 (112.7%) | 3.64 (156.3%) |
MGB | 2.39 | 2.95 (23.2%) | 3.38 (41.4%) | 4.01 (67.5%) | 4.60 (92.3%) |
ES | 2.08 | 2.56 (22.9%) | 3.00 (44.1%) | 3.63 (74.3%) | 4.22 (102.9%) |
MB | 1.33 | 1.77 (33.2%) | 2.23 (67.9%) | 2.87 (116.5%) | 3.47 (161.7%) |
Synthetic 145 | |||||
- | No SLR | 0.48 m | 0.97 m | 1.68 m | 2.31 m |
DM | 1.03 | 1.48 (43.7%) | 1.87 (82.3%) | 2.48 (141.3%) | 3.01 (193.2%) |
MGB | 1.07 | 1.52 (41.4%) | 2.05 (90.8%) | 2.75 (156.1%) | 3.36 (212.7%) |
ES | 0.94 | 1.45 (54.1%) | 1.96 (108.8%) | 2.64 (180.4%) | 3.23 (243.9%) |
MB | 0.97 | 1.4 (43.2%) | 1.8 (86.7%) | 2.5 (154.8%) | 3.1 (218.2%) |
Synthetic35 | |||||
- | No SLR | 0.48 m | 0.97 m | 1.68 m | 2.31 m |
DM | 0.71 | 1.16 (62%) | 1.61 (125.5%) | 2.27 (217.9%) | 2.86 (301%) |
MGB | 0.76 | 1.26 (65%) | 1.75 (129.4%) | 2.43 (217.7%) | 3.05 (298.3%) |
ES | 0.69 | 1.17 (69.5%) | 1.65 (138.4%) | 2.34 (237.5%) | 2.95 (326.9%) |
MB | 0.34 | 0.80 (134.1%) | 1.28 (275.7%) | 1.97 (476.7%) | 2.60 (662.2%) |
Irene | |||||
---|---|---|---|---|---|
Preserve Area | No SLR | 0.48 m | 0.97 m | 1.68 m | 2.31 m |
DM | 0.42 | 0.34 (−17.1%) | 0.44 (6.1%) | 0.66 (59.9%) | 0.71 (72.2%) |
MGB | 0.42 | 0.38 (−9.3%) | 0.41 (−0.89%) | 0.57 (36.5%) | 0.62 (48.8%) |
ES | 0.41 | 0.64 (56.4%) | 0.77 (87.4%) | 0.97 (134.9%) | 1.06 (158.2%) |
MB | 0.27 | 0.28 (0.71%) | 0.32 (15.9%) | 0.37 (34%) | 0.38 (38%) |
Synthetic 145 | |||||
- | No SLR | 0.48 m | 0.97 m | 1.68 m | 2.31 m |
DM | 0.48 | 0.50 (3.8%) | 0.57 (18.6%) | 0.82 (70.6%) | 1.06 (120%) |
MGB | 0.27 | 0.31 (15%) | 0.36 (33.5%) | 0.47 (73.8%) | 0.52 (94.4%) |
ES | 0.35 | 0.46 (30.5%) | 0.46 (29.1%) | 0.52 (48.1%) | 0.63 (78.3%) |
MB | 0.18 | 0.19 (3.53%) | 0.29 (54.8%) | 0.36 (93.4%) | 0.37 (98.5%) |
Synthetic35 | |||||
- | No SLR | 0.48 m | 0.97 m | 1.68 m | 2.31 m |
DM | 0.39 | 0.33 (−15.8%) | 0.33 (−15.4%) | 0.44 (14.62%) | 0.56 (44%) |
MGB | 0.19 | 0.18 (−4.86%) | 0.23 (19.4%) | 0.31 (65%) | 0.36 (89.4%) |
ES | 0.29 | 0.27 (−7.52%) | 0.30 (3.36%) | 0.38 (33.1%) | 0.46 (60.8%) |
MB | 0.09 | 0.13 (48.7%) | 0.12 (40.8%) | 0.12 (39.9%) | 0.14 (67.4%) |
Irene | |||||
---|---|---|---|---|---|
Preserve Area | No SLR | 0.48 m | 0.97 m | 1.68 m | 2.31 m |
DM | 0.29 | 0.31 (5.79%) | 0.31 (6.2%) | 0.42 (45.6%) | 0.69 (137.2%) |
MGB | 0.62 | 0.83 (34.6%) | 0.99 (60.1%) | 1.19 (93.6%) | 1.35 (119.4%) |
ES | 0.50 | 0.69 (37%) | 0.85 (68.7%) | 1.09 (115.4%) | 1.28 (153.7%) |
MB | 0.51 | 0.67 (30.9%) | 0.84 (64%) | 1.04 (104.1%) | 1.22 (139.1%) |
Synthetic 145 | |||||
- | No SLR | 0.48 m | 0.97 m | 1.68 m | 2.31 m |
DM | 0.24 | 0.28 (16%) | 0.30 (26%) | 0.31 (29%) | 0.43 (76.8%) |
MGB | 0.24 | 0.33 (39.4%) | 0.51 (116.1%) | 0.62 (163.4%) | 0.95 (303.2%) |
ES | 0.33 | 0.34 (3.1%) | 0.51 (51.8%) | 0.61 (84%) | 0.97 (192%) |
MB | 0.34 | 0.48 (39.5%) | 0.64 (86%) | 0.73 (113.3%) | 1.01 (197.2%) |
Synthetic35 | |||||
- | No SLR | 0.48 m | 0.97 m | 1.68 m | 2.31 m |
DM | 0.16 | 0.26 (64%) | 0.29 (80.6%) | 0.32 (98%) | 0.35 (122.2%) |
MGB | 0.25 | 0.20 (−21.6%) | 0.34 (33%) | 0.55 (118.4%) | 0.74 (190.1%) |
ES | 0.21 | 0.23 (9.5%) | 0.32 (53.5%) | 0.53 (155.7%) | 0.73 (248.1%) |
MB | 0.05 | 0.08 (42.6%) | 0.11 (112%) | 0.18 (233.2%) | 0.24 (335.9%) |
References
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.; Nunn, P.D.; et al. Sea level change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1137–1216. [Google Scholar] [CrossRef]
- Church, J.A.; Gregory, J.M.; Huybrechts, P.; Kuhn, M.; Lambeck, C.; Nhuan, M.T.; Qin, D.; Woodworth, P.L. Changes in sea level. In Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; Chapter 11; pp. 639–694. [Google Scholar]
- Jevrejava, S.; Moore, J.C.; Grinsted, A.; Woodworth, P.L. Recent global sea level acceleration started over 200 years ago? Geophys. Res. Lett. 2008, 35, 8–11. [Google Scholar] [CrossRef]
- Nerem, R.S.; Chambers, D.P.; Choe, C.; Mitchum, G.T. Estimating Mean Sea Level Change from the TOPEX and Jason Altimeter Missions. Mar. Geod. 2010, 33, 435–446. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013; p. 1535. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Blankespoor, B.; Dasgupta, S.; Laplante, B. Sea-Level Rise and Coastal Wetlands Impacts and Costs; Policy Research Working Paper; No. 6277; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Nicholls, R.J.; Hoozemans, F.M.J.; Marchand, M. Increasing flood risk and wetland losses due to global sea-level rise: Regional and global analyses. Glob. Environ. Chang. 1999, 9. [Google Scholar] [CrossRef]
- Nicholls, R.J. Coastal flooding and wetland loss in the 21st century: Changes under the SRES climate and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 69–86. [Google Scholar] [CrossRef]
- Knutson, T.R.; McBride, J.L.; Chan, J.; Emanuel, K.A.; Holland, G.; Landsea, C.; Held, I.; Kossin, J.P.; Srivastava, A.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010, 3, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Elsner, J.B.; Kossin, J.P.; Jagger, T.H. The increasing intensity of the strongest tropical cyclones. Nature 2008, 455, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Emanuel, K.; Oppenheimer, M.; Vanmarcke, E. Physically based assessment of hurricane surge threat under climate change. Nat. Clim. Chang. 2012, 2, 462–467. [Google Scholar] [CrossRef] [Green Version]
- Bilskie, M.V.; Hagen, S.C.; Medeiros, S.C.; Passeri, D.L. Dynamics of sea level rise and coastal flooding on a changing landscape. Geophys. Res. Lett. 2014, 927–934. [Google Scholar] [CrossRef]
- Passeri, D.L.; Hagen, S.C.; Medeiros, S.C.; Bilskie, M.V. Impacts of historic morphology and sea level rise on tidal hydrodynamics in a microtidal estuary (Grand Bay, Mississippi). Cont. Shelf Res. 2015, 111, 150–158. [Google Scholar] [CrossRef]
- ARCADIS. ADCIRC Based Storm Surge Analysis of Sea Level Rise in the Galveston Bay and Jefferson County Area in Texas. Prepared for The Nature Conservancy; Highlands Ranch, Colorado 80129. 2011. Available online: http://cbbep.org/publications/publication1306.pdf (accessed on 22 November 2017).
- Cheon, S.H.; Suh, K.D. Effect of sea level rise on nearshore significant waves and coastal structures. Ocean Eng. 2016, 114, 280–289. [Google Scholar] [CrossRef]
- Heather, S. Eshorance: An Online Methodology for Estimating the Response of Estuarine Shores From Sea Level Rise. In Proceedings of the NSW Coastal Conference, Batemans Bay, NSW, Australia, 10–12 November 2010; pp. 1–16. [Google Scholar]
- Zhang, K.; Douglas, B.; Leatherman, S.; The, S.; July, N.; Zhang, K.; Douglas, B.; Leatherman, S. Do Storms Cause Long—Term Beach Erosion along the U.S. East Barrier Coast? J. Geol. 2002, 110, 493–502. [Google Scholar] [CrossRef]
- The Nature Conservancy; NOAA National Ocean Service Center. Marshes on the Move: A Manager’s Guide to Understanding and Using Model Results Depicting Potential Impacts of Sea Level Rise on Coastal Wetlands; Washington, DC, USA, 2011. Available online: https://coast.noaa.gov/data/digitalcoast/pdf/marshes-on-the-move.pdf (accessed on 22 November 2017).
- Morris, J.T.; Sundareshwar, P.V.; Nietch, C.T.; Kjerfve, B.; Cahoon, D.R. Responses of coastal wetlands to rising sea level. Ecology 2002, 83, 2869–2877. [Google Scholar] [CrossRef]
- Bertness, M.D.; Ellison, A.M. Determinants of Pattern in a New England Salt Marsh Plant Community. Ecol. Monogr. 1987, 57, 129–147. [Google Scholar] [CrossRef]
- Cahoon, D.R.; Hensel, P.F.; Spencer, T.; Reed, D.J.; McKee, K.L.; Saintilan, N. Coastal Wetland Vulnerability to Relative Sea-Level Rise: Wetland Elevation Trends and Process Controls. Wetl. Nat. Resour. Manag. 2006, 190, 271–292. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Temmerman, S.; Skeehan, E.E.; Guntenspergen, G.R.; Fagherazzi, S. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Chang. 2016, 6, 253–260. [Google Scholar] [CrossRef]
- Doyle, T.W.; Krauss, K.W.; Conner, W.H.; From, A.S. Predicting the retreat and migration of tidal forests along the northern Gulf of Mexico under sea-level rise. For. Ecol. Manag. 2010, 259, 770–777. [Google Scholar] [CrossRef]
- Williams, K.; Ewel, K.C.; Stumpf, R.P.; Putz, F.E.; Thomas, W.; Workman, T.W. Sea-level rise and coastal forest retreat on the west coast of Florida, USA. Ecology 2007, 80, 2045–2063. [Google Scholar] [CrossRef]
- Anderson, K.E.; Cahoon, D.R.; Gill, S.K.; Gutierrez, B.T.; Thieler, E.R.; Titus, J.G.; Williams, S.J. Executive summary. In Coastal Sensitivity to Sea-Level Rise: A Focus on the Mid-Atlantic Region; A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research; U.S. Climate Change Science Program and the Subcommittee on Global Change Research: Washington, DC, USA, 2009; pp. 1–8. [Google Scholar]
- Frey, A.E.; Olivera, F.; Irish, J.L.; Dunkin, L.M.; Kaihatu, J.M.; Ferreira, C.M.; Edge, B.L. Potential impact of climate change on hurricane flooding inundation, population affected and property damages in Corpus Christi. J. Am. Water Resour. Assoc. 2010, 46, 1049–1059. [Google Scholar] [CrossRef]
- Woodruff, J.D.; Irish, J.L.; Camargo, S.J. Coastal flooding by tropical cyclones and sea-level rise. Nature 2013, 504, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Irish, J.L.; Frey, A.E.; Rosati, J.D.; Olivera, F.; Dunkin, L.M.; Kaihatu, J.M.; Ferreira, C.M.; Edge, B.L. Potential implications of global warming and barrier island degradation on future hurricane inundation, property damages, and population impacted. Ocean Coast. Manag. 2010, 53, 645–657. [Google Scholar] [CrossRef]
- Mousavi, M.E.; Irish, J.L.; Frey, A.E.; Olivera, F.; Edge, B.L. Global warming and hurricanes: The potential impact of hurricane intensification and sea level rise on coastal flooding. Clim. Chang. 2011, 104, 575–597. [Google Scholar] [CrossRef]
- Bilskie, M.V.; Hagen, S.C.; Alizad, K.; Medeiros, S.C.; Passeri, D.L.; Needham, H.F.; Cox, A. Dynamic simulation and numerical analysis of hurricane storm surge under sea level rise with geomorphologic changes along the northern Gulf of Mexico. Earth’s Futur. 2016. [Google Scholar] [CrossRef]
- Epanchin-Niell, R.; Kousky, C.; Thompson, A.; Walls, M. Threatened protection: Sea level rise and coastal protected lands of the eastern United States. Ocean Coast. Manag. 2017, 137, 118–130. [Google Scholar] [CrossRef]
- Murdukhayeva, A.; August, P.; Bradley, M.; LaBash, C.; Shaw, N. Assessment of Inundation Risk from Sea Level Rise and Storm Surge in Northeastern Coastal National Parks. J. Coast. Res. 2013, 291, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef] [Green Version]
- Zedler, J.B.; Kercher, S. Wetland Resources: Status, Trends, Ecosystem Services, and Restorability. Annu. Rev. Environ. Resour. 2005, 30, 39–74. [Google Scholar] [CrossRef]
- Burkett, V.; Kusler, J. Climate change: Potential impacts and interactions in wetlands of United States. J. Am. Water Resour. Assoc. 2000, 36, 313–320. [Google Scholar] [CrossRef]
- Baldwin, A.H.; Egnotovich, M.S.; Clarke, E. Hydrologic change and vegetation of tidal freshwater marshes: Field, greenhouse, and seed-bank experiments. Wetlands 2001, 21, 519–531. [Google Scholar] [CrossRef]
- Westerink, J.J.; Blain, C.A.; Luettich, R.A., Jr.; Scheffner, N.W. ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves Coasts and Estuaries, Report 2: Users Manual for ADCIRC-2DDI, Dredging Research Program Technical Report DRP-92-6; U.S. Army Engineers Waterways Experiment Station: Vicksburg, MS, USA, 1994. [Google Scholar]
- Luettich, R.A., Jr.; Westerink, J.J. Implementation and Testing of Elemental Flooding and Drying in the ADCIRC Hydrodynamic Model, Final Report, 8/95, Contract # DACW39-94-M-5869; U.S. Army Crops of Engineers: Vicksburg, MS, USA, 1995. [Google Scholar]
- Dietrich, J.C.; Bunya, S.; Westerink, J.J.; Ebersole, B.A.; Smith, J.M.; Atkinson, J.H.; Jensen, R.; Resio, D.T.; Luettich, R.A.; Dawson, C.; et al. A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part II: Synoptic Description and Analysis of Hurricanes Katrina and Rita. Mon. Weather Rev. 2010, 138, 378–404. [Google Scholar] [CrossRef]
- Parris, A.; Bromirski, P.; Burkett, V.; Cayan, D.R.; Culver, M.; Hall, J.; Horton, R.; Knuuti, K.; Moss, R.; Obeysekera, J. Global Sea Level Rise Scenarios for the United States National Climate Assessment; Climate Program Office: Springfield, MD, USA, 2012. [Google Scholar]
- Mitchell, M.; Hershner, C.; Julie, H.; Schatt, D.; Mason, P.; Eggington, E. Recurrent Flooding Study for Tidewater Virginia; Virginia Institute of Marine Science (VIMS) Center for Coastal Resources Management: Gloucester Point, VA, USA, 2013. [Google Scholar]
- Sallenger, A.H.; Doran, K.S.; Howd, P.A. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nat. Clim. Chang. 2012, 2, 884–888. [Google Scholar] [CrossRef] [Green Version]
- Beckett, L.H.; Baldwin, A.H.; Kearney, M.S. Tidal marshes across a chesapeake bay subestuary are not keeping up with sea-level rise. PLoS ONE 2016, 11, e0159753. [Google Scholar] [CrossRef] [PubMed]
- Watch, W. Adapting to Climate Change in the Chesapeake Bay: Virginia’ s Experience; STAC Workshop: Norfolk, VA, USA, 2011. [Google Scholar]
- Paquier, A.E.; Haddad, J.; Lawler, S.; Ferreira, C.M. Quantification of the Attenuation of Storm Surge Components by a Coastal Wetland of the US Mid Atlantic. Estuaries Coasts 2017, 40, 930–946. [Google Scholar] [CrossRef]
- NOAA. Detailed Method for Mapping Sea Level Rise Marsh Migration; NOAA: Silver Spring, MD, USA, 2017. [Google Scholar]
- Marcy, D.; Brooks, W.; Draganov, K.; Hadley, B.; Herold, N.; Mccombs, J.; Pendleton, M.; Ryan, S.; Sutherland, M.; Waters, K. New Mapping Tool and Techniques for Visualizing Sea Level Rise and Coastal Flooding Impacts. Copyright ASCE 2011 Solutions to Coastal Disasters; American Society of Civil Engineers (ASCE): Charleston, SC, USA, 2011; pp. 474–490. [Google Scholar]
- Kirwan, M.L.; Murray, A.B. A coupled geomorphic and ecological model of tidal marsh evolution. Proc. Natl. Acad. Sci. USA 2007, 104, 6118–6122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Alpaos, A.; Lanzoni, S.; Marani, M.; Rinaldo, A. Landscape evolution in tidal embayments: Modeling the interplay of erosion, sedimentation, and vegetation dynamics. J. Geophys. Res. Earth Surf. 2007, 112, 1–17. [Google Scholar] [CrossRef]
- Schile, L.M.; Callaway, J.C.; Morris, J.T.; Stralberg, D.; Thomas Parker, V.; Kelly, M. Modeling tidal marsh distribution with sea-level rise: Evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. PLoS ONE 2014, 9, e0088760. [Google Scholar] [CrossRef] [PubMed]
- Craft, C.; Clough, J.; Ehman, J.; Jove, S.; Park, R.; Pennings, S.; Guo, H.; Machmuller, M. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front. Ecol. Environ. 2009, 7, 73–78. [Google Scholar] [CrossRef]
- NOAA-CSC C-CAP Land Cover Atlas. Available online: https://coast.noaa.gov/digitalcoast/tools/lca.html (accessed on 24 May 2017).
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, J.C.; Zijlema, M.; Westerink, J.J.; Holthuijsen, L.H.; Dawson, C.; Luettich, R.A.; Jensen, R.E.; Smith, J.M.; Stelling, G.S.; Stone, G.W. Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coast. Eng. 2011, 58, 45–65. [Google Scholar] [CrossRef]
- Dietrich, J.C.; Tanaka, S.; Westerink, J.J.; Dawson, C.N.; Luettich, R.A.; Zijlema, M.; Holthuijsen, L.H.; Smith, J.M.; Westerink, L.G.; Westerink, H.J. Performance of the unstructured-mesh, SWAN+ ADCIRC model in computing hurricane waves and surge. J. Sci. Comput. 2012, 52, 468–497. [Google Scholar] [CrossRef]
- Hanson, J.L.; Wadman, H.M.; Blanton, B.; Roberts, H. Coastal Storm Surge Analysis: Modeling System Validation. Report 4: Intermediate Submission No. 2.0. US Army Engineer Research and Development Center (ERDC). 2013. Available online: http://www.dtic.mil/dtic/tr/fulltext/u2/a583150.pdf (accessed on 22 November 2017).
- Blanton, B.; Stillwell, L.; Roberts, H.; Atkinson, J.; Zou, S.; Forte, M.; Hanson, J.; Luettich, R. Coastal Storm Surge Analysis: Computational System Coastal and Hydraulics Laboratory. Report 2: Intermediate Submission No. 1.2. US Army Engineer Research and Development Center (ERDC). 2011. Available online: http://acwc.sdp.sirsi.net/client/search/asset/1000839;jsessionid=6B9DCD6BB30B93C5752FEB1B865E6A2E.enterprise-15000 (accessed on 22 November 2017).
- Forte, M.; Hanson, J.; Stillwell, L.; Blanchard-Montgomery, M.; Blanton, B.; Luettich, R.; Roberts, H.; Atkinson, J.; Miller, J. Coastal Storm Surge Analysis System: Digital Elevation Model. Report 1: IDS No. 1.1; US Army Engineer Research and Development Center (ERDC). 2011. Available online: http://acwc.sdp.sirsi.net/client/search/asset/1000838;jsessionid=6B9DCD6BB30B93C5752FEB1B865E6A2E.enterprise-15000 (accessed on 22 November 2017).
- Le Provost, C.; Genco, M.L.; Lyard, F.; Vincent, P.; Canceil, P. Spectroscopy of the world ocean tides from a finite element hydro dynamic model. J. Geophys. Res. 1994, 99, 24777–24797. [Google Scholar] [CrossRef]
- Nadal-caraballo, N.C.; Melby, J.A.; Gonzalez, V.M.; Cox, A.T. Coastal Storm Hazards from Virginia to Maine Coastal and Hydraulics Laboratory. US Army Engineer Research and Development Center (ERDC). 2015. Available online: http://www.nad.usace.army.mil/Portals/40/docs/ComprehensiveStudy/Coastal_Storm_Hazards_from_Virginia_to_Maine.pdf (accessed on 22 November 2017).
- Mattocks, C.; Forbes, C.; Ran, L. Design and Implementation of a Real-Time Storm Surge and Flood Forecasting Capability for the State of North Carolina; 2006; Available online: http://www.unc.edu/ims/adcirc/publications/2006/2006_Mattocks.pdf (accessed on 22 November 2017).
- Mattocks, C.; Forbes, C. A real-time, event-triggered storm surge forecasting system for the state of North Carolina. Ocean Model. 2008, 25, 95–119. [Google Scholar] [CrossRef]
- Holland, G.J. An analytical model of the wind and pressure profiles in hurricanes. Mon. Weather Rev. 1980, 108, 1212–1218. [Google Scholar] [CrossRef]
- NOAA NOAA Tides & Currents. Available online: https://tidesandcurrents.noaa.gov/ (accessed on 26 April 2018).
- Garzon, J.; Ferreira, C. Storm Surge Modeling in Large Estuaries: Sensitivity Analyses to Parameters and Physical Processes in the Chesapeake Bay. J. Mar. Sci. Eng. 2016, 4, 45. [Google Scholar] [CrossRef]
- Xiong, Y.; Berger, C.R. Chesapeake Bay Tidal Characteristics. J. Water Resour. Prot. 2010, 02, 619–628. [Google Scholar] [CrossRef]
- Atkinson, J.; McKee Smith, J.; Bender, C. Sea-Level Rise Effects on Storm Surge and Nearshore Waves on the Texas Coast: Influence of Landscape and Storm Characteristics. J. Waterw. Port Coast. Ocean Eng. 2013, 139, 98–117. [Google Scholar] [CrossRef]
- Passeri, D.L.; Hagen, S.C.; Plant, N.G.; Bilskie, M.V.; Medeiros, S.C.; Alizad, K. Tidal hydrodynamics under future sea level rise and coastal morphology in the Northern Gulf of Mexico. Earth’s Futur. 2016, 4, 159–176. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, J.; Ph, D.; Hagen, S.C.; Ce, D.; Wre, D.; Zou, S.; Bacopoulos, P.; Medeiros, S.; Weishampel, J. Deriving Frictional Parameters and Performing Historical Validation for an ADCIRC Storm Surge Model of the Florida Gulf Coast. Florida Watershed 2011, 4, 22–27. [Google Scholar]
- Ferreira, C.M. Uncertainty in hurricane surge simulation due to land cover specification. J. Geophys. Res. Ocean. 2014, 119, 1812–1827. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, C.M.; Olivera, F.; Irish, J.L. Arc StormSurge: Integrating Hurricane Storm Surge Modeling and GIS. J. Am. Water Resour. Assoc. 2014, 50, 219–233. [Google Scholar] [CrossRef]
- Xia, M.; Xie, L.; Pietrafesa, L.J.; Peng, M. A Numerical Study of Storm Surge in the Cape Fear River Estuary and Adjacent Coast. J. Coast. Res. 2008, 4, 159–167. [Google Scholar] [CrossRef]
- Li, H.; Lin, L.; Burks-Copes, K. Numerical modeling of coastal inundation and sedimentation by storm surge, tides, and waves at Norfolk, Virginia, USA. In Proceedings of the 33rd International Conference on Coastal Engineering, Santander, Spain, 1–6 July 2012. [Google Scholar]
- Zhang, K.; Li, Y.; Liu, H.; Xu, H.; Shen, J. Comparison of three methods for estimating the sea level rise effect on storm surge flooding. Clim. Chang. 2013, 118, 487–500. [Google Scholar] [CrossRef]
- Glass, E.M.; Garzon, J.L.; Lawler, S.; Paquier, E.; Ferreira, C.M. Potential of marshes to attenuate storm surge water level in the Chesapeake Bay. Limnol. Oceanogr. 2017. [Google Scholar] [CrossRef]
- Kennedy, V.S.; Twilley, R.R.; Kleypas, J.A.; Cowan, J.H.; Hare, S.R. Coastal and Marine Ecosystems and Global Climate Change: Potential Effects on U.S. Resources; Prepared for the Pew Center on Global Climate Change; Center for Climate and Energy Solutions: Arlington, VA, USA, 2002; p. 64. [Google Scholar]
- Glick, P.; Clough, J.; Polaczyk, A.; Couvillion, B.; Nunley, B. Potential Effects of Sea-Level Rise on Coastal Wetlands in Southeastern Louisiana. J. Coast. Res. Spec. Issue 63 Underst. Predict. Charg. Coast. Ecosyst. North. Gulf Mex. 2013, 63, 211–233. [Google Scholar] [CrossRef] [Green Version]
Study Area | ||||
---|---|---|---|---|
Reserve | Location | Land Area | Mean Elevation * | Vegetation 5 |
Dameron 1 Marsh | Northumberland County, VA | 1.3 km2 (316 Acre) | 5.7 m | Spartina alterniflora, Juncus roemerianus, Distichlis spicata, Scirpus robustus, Phragmites, Spartina patens |
Eastern 3 Shore | Delmarva Peninsula, Northampton County, VA | 4.55 km2 (1123 Acre) | 1.7 m | Spartina alterniflora, Juncus roemerianus, Distichlis spicata, Spartina cynosuroides, Spartina patens |
Magothy 4 Bay | Northampton, VA | 1.16 km2 (286 Acre) | 1.7 m | Spartina alterniflora, Juncus roemerianus, Distichlis spicata, Spartina cynosuroides, Spartina patens |
Monie 2 Bay | Somerset County, MD | 13.87 km2 (3426 Acre) | 2 m | Spartina alterniflora, Ruppia maritima, Spartina patens, Distichlis spicata, Juncus roemerianus |
SLR Projections | Local SLR 1 | Marsh Migration Scenario 2 |
---|---|---|
Historic | 0.49 m (1.6 ft.) | 0.61 m (2 ft.) |
Low | 0.98 m (3.2 ft.) | 0.92 m (3 ft.) |
High | 1.68 m (5.5 ft.) | 1.53 m (5 ft.) |
Highest | 2.32 m (7.6 ft.) | 1.83 m (6 ft.) |
Storm | Min. Central Pressure (mb) | Max. Wind Speed (kt) | Forward Speed (m/s) |
---|---|---|---|
Hurricane Irene | 942 | 105 | 8.76 |
Synthetic145 | 945 | 111 | 3.1 |
Synthetic35 | 985 | 64 | 9.18 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bigalbal, A.; Rezaie, A.M.; Garzon, J.L.; Ferreira, C.M. Potential Impacts of Sea Level Rise and Coarse Scale Marsh Migration on Storm Surge Hydrodynamics and Waves on Coastal Protected Areas in the Chesapeake Bay. J. Mar. Sci. Eng. 2018, 6, 86. https://doi.org/10.3390/jmse6030086
Bigalbal A, Rezaie AM, Garzon JL, Ferreira CM. Potential Impacts of Sea Level Rise and Coarse Scale Marsh Migration on Storm Surge Hydrodynamics and Waves on Coastal Protected Areas in the Chesapeake Bay. Journal of Marine Science and Engineering. 2018; 6(3):86. https://doi.org/10.3390/jmse6030086
Chicago/Turabian StyleBigalbal, Alayna, Ali M. Rezaie, Juan L. Garzon, and Celso M. Ferreira. 2018. "Potential Impacts of Sea Level Rise and Coarse Scale Marsh Migration on Storm Surge Hydrodynamics and Waves on Coastal Protected Areas in the Chesapeake Bay" Journal of Marine Science and Engineering 6, no. 3: 86. https://doi.org/10.3390/jmse6030086
APA StyleBigalbal, A., Rezaie, A. M., Garzon, J. L., & Ferreira, C. M. (2018). Potential Impacts of Sea Level Rise and Coarse Scale Marsh Migration on Storm Surge Hydrodynamics and Waves on Coastal Protected Areas in the Chesapeake Bay. Journal of Marine Science and Engineering, 6(3), 86. https://doi.org/10.3390/jmse6030086