Using Argus Video Monitoring to Determine Limiting Factors of Aeolian Sand Transport on a Narrow Beach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Used Data
2.3. Classification of Limited and Unlimited Events
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sherman, D.J.; Houser, C.; Baas, A.C.W. Electronic Measurement Techniques for Field Experiments in Process Geomorphology; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; Volume 14, pp. 195–221. [Google Scholar]
- Davidson-Arnott, R.G.D.; Law, M.N. Measurement and prediction of long-term sediment supply to coastal foredunes. J. Coast. Res. 1996, 12, 654–663. [Google Scholar]
- Bauer, B.O.; Davidson-Arnott, R.G.D. A general framework for modeling sediment supply to coastal dunes including wind angle, beach geometry, and fetch effects. Geomorphology 2003, 49, 89–108. [Google Scholar] [CrossRef]
- Gares, P.A. Factors affecting eolian sediment transport in beach and dune environments. J. Coast. Res. 1988, 121–126. Available online: https://www.jstor.org/stable/40928738?seq=1#page_scan_tab_contents (accessed on 13 November 2018).
- Sherman, D.J.; Hotta, S. Aeolian sediment transport: Theory and measurement. Coast. Dunes Form Process 1990, 17, 37. [Google Scholar]
- Bauer, B.O.; Davidson-Arnott, R.G.D.; Hesp, P.A.; Namikas, S.L.; Ollerhead, J.; Walker, I.J. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport. Geomorphology 2009, 105, 106–116. [Google Scholar] [CrossRef]
- Sherman, D.J.; Li, B. Predicting aeolian sand transport rates: A reevaluation of models. Aeolian Res. 2012, 3, 371–378. [Google Scholar] [CrossRef]
- Miot da Silva, G.; Hesp, P.A. Coastline orientation, aeolian sediment transport and foredune and dunefield dynamics of Moçambique Beach, Southern Brazil. Geomorphology 2010, 120, 258–278. [Google Scholar] [CrossRef]
- Keijsers, J.G.S.; Poortinga, A.; Riksen, M.J.P.M.; Maroulis, J. Spatio-temporal variability in accretion and erosion of coastal foredunes in The Netherlands: Regional climate and local topography. PLoS ONE 2014, 9, e91115. [Google Scholar] [CrossRef] [PubMed]
- Svasek, J.N.; Terwindt, J.H.J. Measurements of sand transport by wind on a natural beach. Sedimentology 1974, 21, 311–322. [Google Scholar] [CrossRef]
- Jackson, N.L.; Nordstrom, K.F. Aeolian transport of sediment on a beach during and after rainfall, Wildwood, NJ, USA. Geomorphology 1998, 22, 151–157. [Google Scholar] [CrossRef]
- Sherman, D.J.; Jackson, D.W.; Namikas, S.L.; Wang, J. Wind-blown sand on beaches: An evaluation of models. Geomorphology 1998, 22, 113–133. [Google Scholar] [CrossRef]
- Wiggs, G.F.S.; Atherton, R.J.; Baird, A.J. Thresholds of aeolian sand transport: Establishing suitable values. Sedimentology 2004, 51, 95–108. [Google Scholar] [CrossRef]
- Edwards, B.L.; Namikas, S.L. Small-scale variability in surface moisture on a fine-grained beach: Implications for modeling aeolian transport. Earth Surf. Process. Landf. 2009, 34, 1333–1338. [Google Scholar] [CrossRef]
- Delgado-Fernandez, I.; Davidson-Arnott, R.G.D. Meso-scale aeolian sediment input to coastal dunes: The nature of aeolian transport events. Geomorphology 2011, 126, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Nield, J.M.; King, J.; Wiggs, G.F.S.; Leyland, J.; Bryant, R.G.; Chiverrell, R.C.; Darby, S.E.; Eckardt, F.D.; Thomas, D.S.G.; Vircavs, L.H.; et al. Estimating aerodynamic roughness over complex surface terrain. J. Geophys. Res. Atmos. 2013, 118, 12948–12961. [Google Scholar] [CrossRef]
- Nield, J.M.; King, J.; Jacobs, B. Detecting surface moisture in aeolian environments using terrestrial laser scanning. Aeolian Res. 2014, 12, 9–17. [Google Scholar] [CrossRef]
- Hage, P.M.; Ruessink, B.G.; Donker, J.J.A. Determining sand strip characteristics using Argus video monitoring. Aeolian Res. 2018, 33, 1–11. [Google Scholar] [CrossRef]
- Jackson, N.L.; Nordstrom, K.F. Effects of Time-dependent Moisture Content of Surface Sediments on Aeolian Transport Rates Across a Beach, Wildwood, New Jersey, USA. Earth Surf. Process. Landf. 1997, 22, 611–621. [Google Scholar] [CrossRef]
- Davidson-Arnott, R.G.D.; MacQuarrie, K.; Aagaard, T. The effect of wind gusts, moisture content and fetch length on sand transport on a beach. Geomorphology 2005, 68, 115–129. [Google Scholar] [CrossRef]
- Baas, A.C.W.; Sherman, D.J. Spatiotemporal variability of aeolian sand transport in a coastal dune environment. J. Coast. Res. 2006, 22, 1198–1205. [Google Scholar] [CrossRef]
- Udo, K.; Kuriyama, Y.; Jackson, D.W.T. Observations of wind-blown sand under various meteorological conditions at a beach. J. Geophys. Res. Earth Surf. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Davidson-Arnott, R.G.D.; Bauer, B.O. Aeolian sediment transport on a beach: Thresholds, intermittency, and high frequency variability. Geomorphology 2009, 105, 117–126. [Google Scholar] [CrossRef]
- Sherman, D.J.; Li, B.; Farrell, E.J.; Ellis, J.T.; Cox, W.D.; Maia, L.P.; Sousa, P.H.G.O. Measuring Aeolian Saltation: A Comparison of Sensors. J. Coast. Res. 2011, 59, 280–290. [Google Scholar] [CrossRef]
- Sherman, D.J.; Houser, C.; Ellis, J.T.; Farrell, E.J.; Li, B.; Davidson-Arnott, R.G.; Baas, A.C.; Maia, L.P. Characterization of aeolian streamers using time-average videography. J. Coast. Res. 2013, 165, 1331–1336. [Google Scholar] [CrossRef]
- Delgado-Fernandez, I.; Davidson-Arnott, R.G.D.; Ollerhead, J. Application of a Remote Sensing Technique to the Study of Coastal Dunes. J. Coast. Res. 2009, 255, 1160–1167. [Google Scholar] [CrossRef]
- Van Enckevort, I.M.J.; Ruessink, B.G.; Coco, G.; Suzuki, K.; Turner, I.L.; Plant, N.G.; Holman, R.A. Observations of nearshore crescentic sandbars. J. Geophys. Res. C Oceans 2004, 109, 1–17. [Google Scholar] [CrossRef]
- Ruessink, B.G.; Pape, L.; Turner, I.L. Daily to interannual cross-shore sandbar migration: Observations from a multiple sandbar system. Cont. Shelf Res. 2009, 29, 1663–1677. [Google Scholar] [CrossRef]
- Pianca, C.; Holman, R.A.; Siegle, E. Shoreline variability from days to decades: Results of long-term video imaging. J. Geophys. Res. C Oceans 2015, 120, 2159–2178. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, P.V.; Pereira, P.S.; Calliari, L.J.; Ellis, J.T. Behavior and identification of ephemeral sand dunes at the backshore zone using video images. Anais da Academia Brasileira de Ciências 2016, 88, 1357–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baas, A.C.W.; Sherman, D. Formation and behavior of aeolian streamers. J. Geophys. Res. Earth Surf. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Jackson, N.L.; Sherman, D.J.; Hesp, P.A.; Klein, A.H.F.; Ballasteros, F., Jr.; Nordstrom, K.F. Small-scale spatial variations in aeolian sediment transport on a fine-sand beach. J. Coast. Res. 2006, 1, 379–383. [Google Scholar]
- Davidson-Arnott, R.G.D.; Yang, Y.; Ollerhead, J.; Hesp, P.A.; Walker, I.J. The effects of surface moisture on aeolian sediment transport threshold and mass flux on a beach. Earth Surf. Process. Landf. 2008, 33, 55–74. [Google Scholar] [CrossRef]
- Nield, J.M.; Wiggs, G.F.S.; Squirrell, R.S. Aeolian sand strip mobility and protodune development on a drying beach: Examining surface moisture and surface roughness patterns measured by terrestrial laser scanning. Earth Surf. Process. Landf. 2011, 36, 513–522. [Google Scholar] [CrossRef]
- Nield, J.M. Surface moisture-induced feedback in aeolian environments. Geology 2011, 39, 915–918. [Google Scholar] [CrossRef]
- Eamer, J.B.R.; Walker, I.J. Quantifying sand storage capacity of large woody debris on beaches using LiDAR. Geomorphology 2010, 118, 33–47. [Google Scholar] [CrossRef]
- Hesp, P.A.; Arens, S.M. Crescentic dunes at Schiermonnikoog, The Netherlands. Earth Surf. Process. Landf. 1997, 22, 785–788. [Google Scholar] [CrossRef] [Green Version]
- Kocurek, G.; Townsley, M.; Yeh, E.; Havholm, K.G.; Sweet, M.L. Dune and Dune-Field Development on Padre Island, Texas, with Implications for Interdune Deposition and Water-Table-Controlled Accumulation. J. Sediment. Res. 1992, 62, 622–635. [Google Scholar] [CrossRef]
- Elbelrhiti, H. Initiation and early development of barchan dunes: A case study of the Moroccan Atlantic Sahara desert. Geomorphology 2012, 138, 181–188. [Google Scholar] [CrossRef]
- McKenna Neuman, C.; Langston, G. Measurement of water content as a control of particle entrainment by wind. Earth Surf. Process. Landf. 2006, 31, 303–317. [Google Scholar] [CrossRef]
- Masselink, G.; Kroon, A.; Davidson-Arnott, R.G.D. Morphodynamics of intertidal bars in wave-dominated coastal settings—A review. Geomorphology 2006, 73, 33–49. [Google Scholar] [CrossRef]
- Aagaard, T.; Kroon, A.; Andersen, S.; Sørensen, R.M.; Quartel, S.; Vinther, N. Intertidal beach change during storm conditions; Egmond, The Netherlands. Mar. Geol. 2005, 218, 65–80. [Google Scholar] [CrossRef]
- Quartel, S.; Grasmeijer, B.T. Dynamiek van het strand bij Noordwijk aan Zee en Egmond aan Zee en het effect van suppleties. In Rijksinstituut voor Kust en Zee (RIKZ). Opdracht RKZ-1667; Universiteit Utrecht: Utrecht, The Netherlands, 2007. [Google Scholar]
- De Winter, R.C.; Gongriep, F.; Ruessink, B.G. Observations and modeling of alongshore variability in dune erosion at Egmond aan Zee, The Netherlands. Coast. Eng. 2015, 99, 167–175. [Google Scholar] [CrossRef]
- Wijnberg, K.M.; Terwindt, J.H.J. Extracting decadal morphological behaviour from high-resolution, long-term bathymetric surveys along the Holland coast using eigenfunction analysis. Mar. Geol. 1995, 126, 301–330. [Google Scholar] [CrossRef]
- Quartel, S.; Ruessink, B.G.; Kroon, A. Daily to seasonal cross-shore behaviour of quasi-persistent intertidal beach morphology. Earth Surf. Process. Landf. 2007, 32, 1293–1307. [Google Scholar] [CrossRef]
- De Vries, S.; Arens, S.M.; de Schipper, M.A.; Ranasinghe, R. Aeolian sediment transport on a beach with a varying sediment supply. Aeolian Res. 2014, 15, 235–244. [Google Scholar] [CrossRef]
- Hsu, S.A. Computing eolian sand transport from routine weather data. In Proceedings of the 14th International Conference on Coastal Engineering, Copenhagen, Denmark, 24–28 June 1974; pp. 1619–1626. [Google Scholar]
- Van Enckevort, I.M.J.; Ruessink, B.G. Effect of hydrodynamics and bathymetry on video estimates of nearshore sandbar position. J. Geophys. Res. C Oceans 2001, 106, 16969–16979. [Google Scholar] [CrossRef] [Green Version]
- Holman, R.A.; Sallenger, A.H. High-energy nearshore processes. Eos Trans. Am. Geophys. Union 1986, 67, 1369. [Google Scholar] [CrossRef]
- Holman, R.A.; Stanley, J. The history and technical capabilities of Argus. Coast. Eng. 2007, 54, 477–491. [Google Scholar] [CrossRef]
- Hage, P.M. Video Monitoring of Meso-Scale Aeolian Activity on a Narrow Beach. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2014. Available online: https://dspace.library.uu.nl/handle/1874/301331 (accessed on 9 November 2018).
- Seppälä, M.; Lindé, K. Wind Tunnel Studies of Ripple Formation. Geogr. Ann. Ser. A Phys. Geogr. 1978, 60, 29–42. [Google Scholar] [CrossRef]
- Baas, J.H.; Oost, A.P.; Sztano, O.K.; Boer, P.L.; Postma, G. Time as an independent variable for current ripples developing towards linguoid equilibrium morphology. Terra Nova 1993, 5, 29–35. [Google Scholar] [CrossRef]
- Baas, J.H. A flume study on the development and equilibrium morphology of current ripples in very fine sand. Sedimentology 1994, 41, 185–209. [Google Scholar] [CrossRef]
- Bagnold, R.A. The Physics of Blown Sand and Desert Dunes; Dover Publications, Inc.: Mineola, NY, USA, 1941. [Google Scholar]
- Aarninkhof, S.G.J.; Turner, I.L.; Dronkers, T.D.T.; Caljouw, M.; Nipius, L. A video-based technique for mapping intertidal beach bathymetry. Coast. Eng. 2003, 49, 275–289. [Google Scholar] [CrossRef]
- Davidson-Arnott, R.G.D.; Law, M.N. Seasonal patterns and controls on sediment supply to coastal foredunes, Long Point, Lake Erie. In Coast Dunes: Form Process; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1990; pp. 177–200. [Google Scholar]
- Delgado-Fernandez, I. Meso-scale modelling of aeolian sediment input to coastal dunes. Geomorphology 2011, 130, 230–243. [Google Scholar] [CrossRef] [Green Version]
- Smit, Y.; Ruessink, G.; Brakenhoff, L.B.; Donker, J.J.A. Measuring spatial and temporal variation in surface moisture on a coastal beach with a near-infrared terrestrial laser scanner. Aeolian Res. 2018, 31, 19–27. [Google Scholar] [CrossRef]
- Brakenhoff, L.B.; Smit, Y.; Donker, J.J.; Ruessink, G. Tide-Induced Variability in Beach Surface Moisture: Observations and Modelling. Earth Surf. Process. Landf. 2018. [Google Scholar] [CrossRef]
- Lynch, K.; Jackson, D.; Cooper, J.A.G. The fetch effect on aeolian sediment transport on a sandy beach: A case study from Magilligan Strand, Northern Ireland. Earth Surf. Process. Landf. 2016, 41, 1129–1135. [Google Scholar] [CrossRef]
- Delgado-Fernandez, I. A review of the application of the fetch effect to modelling sand supply to coastal foredunes. Aeolian Res. 2010, 2, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Walker, I.J.; Hesp, P.A.; Davidson-Arnott, R.G.D.; Ollerhead, J. Topographic Steering of Alongshore Airflow over a Vegetated Foredune: Greenwich Dunes, Prince Edward Island, Canada. J. Coast. Res. 2006, 225, 1278–1291. [Google Scholar] [CrossRef]
- Lynch, K.; Jackson, D.W.; Cooper, J.A.G. A remote-sensing technique for the identification of aeolian fetch distance. Sedimentology 2006, 53, 1381–1390. [Google Scholar] [CrossRef]
- Nordstrom, K.F.; Jackson, N.L. The role of wind direction in eolian transport on a narrow sandy beach. Earth Surf. Process. Landf. 1993, 18, 675–685. [Google Scholar] [CrossRef]
- Namikas, S.L.; Edwards, B.L.; Bitton, M.C.A.; Booth, J.L.; Zhu, Y. Temporal and spatial variabilities in the surface moisture content of a fine-grained beach. Geomorphology 2010, 114, 303–310. [Google Scholar] [CrossRef]
- Nordstrom, K.F.; Jackson, N.L. Effect of source width and tidal elevation changes on aeolian transport on an estuarine beach. Sedimentology 1992, 39, 769–778. [Google Scholar] [CrossRef]
Wind Class | Wind Velocity (m/s) |
---|---|
1 | 8 |
2 | 9–11 |
3 | 12 |
4 | ≥13 |
Transport Class | |||||
---|---|---|---|---|---|
Wind Class | 0 | 1 | 2 | 3 | 4 |
1 | 82 | 99 | 32 | 27 | 21 |
2 | 46 | 87 | 27 | 38 | 53 |
3 | 9 | 23 | 16 | 11 | 23 |
4 | 18 | 25 | 17 | 5 | 49 |
0.001 | 0.005 | 0.01 | 0.02 | 0.05 | 0.1 | 0.15 | |
---|---|---|---|---|---|---|---|
hour of occurence | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
month of occurence | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
wind velocity (mean) | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
wind velocity (last 10 min of each hour) | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
wind velocity (highest gust of each hour) | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
temperature (at time of observation at 1.5 m) | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
temperature (minimum for preceding 6 h at 0.1 m) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
temperature (dew point at 1.5 m) | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
sunshine duration | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
global radiation | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
precipitation duration | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
hourly precipitation amount | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
air pressure | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
cloud cover | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
relative atmospheric humidity (at time of observation at 1.5 m) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
fog occurence | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
rain occurence | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
snow occurence | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
thunder occurence | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
ice occurence | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hage, P.; Ruessink, G.; Donker, J. Using Argus Video Monitoring to Determine Limiting Factors of Aeolian Sand Transport on a Narrow Beach. J. Mar. Sci. Eng. 2018, 6, 138. https://doi.org/10.3390/jmse6040138
Hage P, Ruessink G, Donker J. Using Argus Video Monitoring to Determine Limiting Factors of Aeolian Sand Transport on a Narrow Beach. Journal of Marine Science and Engineering. 2018; 6(4):138. https://doi.org/10.3390/jmse6040138
Chicago/Turabian StyleHage, Pam, Gerben Ruessink, and Jasper Donker. 2018. "Using Argus Video Monitoring to Determine Limiting Factors of Aeolian Sand Transport on a Narrow Beach" Journal of Marine Science and Engineering 6, no. 4: 138. https://doi.org/10.3390/jmse6040138
APA StyleHage, P., Ruessink, G., & Donker, J. (2018). Using Argus Video Monitoring to Determine Limiting Factors of Aeolian Sand Transport on a Narrow Beach. Journal of Marine Science and Engineering, 6(4), 138. https://doi.org/10.3390/jmse6040138