Feedbacks between Biotic and Abiotic Processes Governing the Development of Foredune Blowouts: A Review
Abstract
:1. Introduction
2. Blowouts
2.1. Initiation
2.2. Development
2.2.1. Morphology
Trough Blowouts
Saucers Blowouts
2.2.2. Morphological Impacts on Vegetation
Erosion in the Deflation Basin
Accretion on the Depositional Lobe
2.3. Closure
2.3.1. Spatial Aspect of Vegetation Re-Colonization
2.3.2. Temporal Aspects of Vegetation Re-Colonization
2.3.3. Ecological Aspects of Vegetation Re-Colonization
3. Discussion
3.1. A New Conceptual Model for Dynamics of Existing Blowouts
3.2. Predictive Model Framework
3.3. General Discussion
Calibration and Validation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davidson-Arnott, R. Introduction to Coastal Processes and Geomorphology; Cambridge University Press: Cambridge, UK, 2010; ISBN 0521874459. [Google Scholar]
- Ruessink, B.G.; Kroon, A. The behaviour of a multiple bar system in the nearshore zone of Terschelling, the Netherlands: 1965–1993. Mar. Geol. 1994, 121, 187–197. [Google Scholar] [CrossRef]
- Almar, R.; Castelle, B.; Ruessink, B.G.; Sénéchal, N.; Bonneton, P.; Marieu, V. Two- and three-dimensional double-sandbar system behaviour under intense wave forcing and a meso–macro tidal range. Cont. Shelf Res. 2010, 30, 781–792. [Google Scholar] [CrossRef]
- Ruggiero, P.; Kaminsky, G.M.; Gelfenbaum, G.; Voigt, B. Seasonal to Interannual Morphodynamics along a High-Energy Dissipative Littoral Cell. J. Coast. Res. 2005, 213, 553–578. [Google Scholar] [CrossRef]
- Shand, R.D.; Bailey, D.G.; Shepherd, M.J. Longshore realignment of shore-parallel sand-bars at Wanganui, New Zealand. Mar. Geol. 2001, 179, 147–161. [Google Scholar] [CrossRef]
- Wright, L.; Short, A. Morphodynamic variability of surf zones and beaches: A synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar] [CrossRef]
- Duran, O.; Moore, L.J. Vegetation controls on the maximum size of coastal dunes. Proc. Natl. Acad. Sci. USA 2013, 110, 17217–17222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Short, A.D.; Hesp, P.A. Wave, beach and dune interactions in southeastern Australia. Mar. Geol. 1982, 48, 259–284. [Google Scholar] [CrossRef]
- Arens, S.M.; Slings, Q.L.; Geelen, L.H.W.T.; Van der Hagen, H.G.J.M. Restoration of Dune Mobility in The Netherlands; Springer: Berlin/Heidelberg, Germany, 2013; pp. 107–124. [Google Scholar]
- Hesp, P. Foredunes and blowouts: initiation, geomorphology and dynamics. Geomorphology 2002, 48, 245–268. [Google Scholar] [CrossRef]
- Nordstrom, K.F. Beaches and dunes of human-altered coasts. Prog. Phys. Geogr. 1994, 18, 497–516. [Google Scholar] [CrossRef]
- Provoost, S.; Jones, M.L.M.; Edmondson, S.E. Changes in landscape and vegetation of coastal dunes in northwest Europe: A review. J. Coast. Conserv. 2011, 15, 207–226. [Google Scholar] [CrossRef]
- Pye, K.; Blott, S.J.; Howe, M.A. Coastal dune stabilization in Wales and requirements for rejuvenation. J. Coast. Conserv. 2014, 18, 27–54. [Google Scholar] [CrossRef]
- Pye, K.; Blott, S.J. Evolution of a sediment-starved, over-stabilised dunefield: Kenfig Burrows, South Wales, UK. J. Coast. Conserv. 2017, 21, 685–717. [Google Scholar] [CrossRef]
- Van Boxel, J.H.; Jungerius, P.D.; Kieffer, N.; Hampele, N. Ecological effects of reactivation of artificially stabilized blowouts in coastal dunes. J. Coast. Conserv. 1997, 3, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Charbonneau, B.R.; Wnek, J.P.; Langley, J.A.; Lee, G.; Balsamo, R.A. Above vs. belowground plant biomass along a barrier island: Implications for dune stabilization. J. Environ. Manage. 2016, 182, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Darke, I.B.; Walker, I.J.; Hesp, P.A. Beach-dune sediment budgets and dune morphodynamics following coastal dune restoration, Wickaninnish Dunes, Canada. Earth Surf. Process. Landforms 2016, 41, 1370–1385. [Google Scholar] [CrossRef]
- Gares, P.A.; Nordstrom, K.K.F. A cyclic model of foredune blowout evolution for a leeward coast: Island Beach, New Jersey. Ann. Assoc. Am. Geogr. 1995, 85, 1–20. [Google Scholar]
- Hesp, P.A.; Walker, I.J. Coastal Dunes. In Treatise on Geomorphology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 11, pp. 328–355. ISBN 9780080885223. [Google Scholar]
- Olson, J.S. Lake Michigan Dune Development. 3. Lake-Level, Beach, and Dune Oscillations. J. Geol. 1958, 66, 473–483. [Google Scholar] [CrossRef]
- Martinez, M.L.; Hesp, P.A.; Gallego-Fernández, J.B. Coastal Dunes: Human Impact and Need for Restoration. In Restoration of Coastal Dunes; Springer: Berlin, Germany, 2013; pp. 1–14. ISBN 9783642334443. [Google Scholar]
- Nordstrom, K.F.; Hartman, J.; Freestone, A.L.; Wong, M.; Jackson, N.L. Changes in topography and vegetation near gaps in a protective foredune. Ocean Coast. Manag. 2007, 50, 945–959. [Google Scholar] [CrossRef]
- Arens, S.M.; Mulder, J.P.M.; Slings, Q.L.; Geelen, L.H.W.T.; Damsma, P. Dynamic dune management, integrating objectives of nature development and coastal safety: Examples from the Netherlands. Geomorphology 2013, 199, 205–213. [Google Scholar] [CrossRef]
- Battiau-Queney, Y. The dunes of Merlimont (north of France): a natural museum of aeolian landforms. Dyn. Environ. 2014, 33, 51–64. [Google Scholar]
- Clemmensen, L.B.; Hansen, K.W.T.; Kroon, A. Storminess variation at Skagen, northern Denmark since AD 1860: Relations to climate change and implications for coastal dunes. Aeolian Res. 2014, 15, 101–112. [Google Scholar] [CrossRef]
- Clemmensen, L.B.; Murray, A.S.; Bech, J.-H.; Clausen, A. Large-scale aeolian sand movement on the west coast of Jutland, Denmark in late Subboreal to early Subatlantic time—a record of climate change or cultural impact? GFF 2001, 123, 193–203. [Google Scholar] [CrossRef]
- Dech, J.P.; Maun, M.A.; Pazner, M.I. Blowout dynamics on Lake Huron sand dunes: analysis of digital multispectral data from colour air photos. Catena 2005, 60, 165–180. [Google Scholar] [CrossRef]
- Jewell, M.; Houser, C.; Trimble, S. Phases of blowout initiation and stabilization on Padre Island revealed through ground-penetrating radar and remotely sensed imagery. Phys. Geogr. 2017, 1–22. [Google Scholar] [CrossRef]
- Smith, A.; Gares, P.A.; Wasklewicz, T.; Hesp, P.A.; Walker, I.J. Three years of morphologic changes at a bowl blowout, Cape Cod, USA. Geomorphology 2017, 295, 452–466. [Google Scholar] [CrossRef]
- Hesp, P.A. The Manawatu dunefield: environmental change and human impacts. N. Z. Geog. 2001, 57, 33–40. [Google Scholar] [CrossRef]
- Vestergaard, P. Natural plant diversity development on a man-made dune system. In Restoration of Coastal Dunes; Springer: Berlin, Germany, 2013; pp. 49–66. [Google Scholar]
- Hillen, R.; Roelse, P. Dynamic preservation of the coastline in the {Netherlands}. J. Coast. Conserv. 1995, 1, 17–28. [Google Scholar] [CrossRef]
- Mulder, J.P.M.; Hommes, S.; Horstman, E.M. Implementation of coastal erosion management in the Netherlands. Ocean Coast. Manag. 2011, 54, 888–897. [Google Scholar] [CrossRef]
- Nordstrom, K.F. Beach and Dune Restoration; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Petersen, J.; Janssen, G.; Lammers, E.J.; Menn, I.; Mulder, S. Beaches and Dunes. In Wadden Sea Quality Status Report 2004; Essink, K., Ed.; Common Wadden Sea Secretariat: Wilhelmshaven, Germany, 2005; pp. 237–258. [Google Scholar]
- Rhind, P.; Jones, R. A framework for the management of sand dune systems in Wales. J. Coast. Conserv. 2009, 13, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Common Wadden Sea Secretariat Wadden Sea Plan 2010. Eleventh Trilateral Governmental Conference on the Protection of the Wadden Sea; Common Wadden Sea Secretariat: Wilhelmshaven, Germany, 2010. [Google Scholar]
- Hesp, P.A.; Hilton, M.J. Restoration of foredunes and transgressive dunefields: case studies from New Zealand. In Restoration of Coastal Dunes; Springer: Berlin, Germany, 2013; pp. 67–92. [Google Scholar]
- Kuipers, M. The daring Dutch: restoring the dynamic dunes. In Coastal Dunes Management Strategies and Practices: Perspectives and Case Studies; Favennac, J., Battiau-Queney, Y., Eds.; Dynamiques Environnementales: Pesac, France, 2014; pp. 132–138. [Google Scholar]
- Barchyn, T.E.; Hugenholtz, C.H. Predictability of dune activity in real dune fields under unidirectional wind regimes. J. Geophys. Res. Earth Surf. 2015, 120, 159–182. [Google Scholar] [CrossRef] [Green Version]
- Ruessink, B.G.; Arens, S.M.; Kuipers, M.; Donker, J.J.A. Coastal dune dynamics in response to excavated foredune notches. Aeolian Res. 2017. [Google Scholar] [CrossRef]
- Corenblit, D.; Baas, A.; Balke, T.; Bouma, T.; Fromard, F.; Garófano-Gómez, V.; González, E.; Gurnell, A.M.; Hortobágyi, B.; Julien, F.; et al. Engineer pioneer plants respond to and affect geomorphic constraints similarly along water-terrestrial interfaces world-wide. Glob. Ecol. Biogeogr. 2015, 24, 1363–1376. [Google Scholar] [CrossRef] [Green Version]
- Anthony Stallins, J.; Corenblit, D. Interdependence of geomorphic and ecologic resilience properties in a geographic context. Geomorphology 2018, 305, 76–93. [Google Scholar] [CrossRef]
- Odling-Smee, F.; Odling-Smee, H.; Laland, K. Niche Construction: The Neglected Process in Evolution; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Vaz, A.S.; Macedo, J.A.; Alves, P.; Honrado, J.P.; Lomba, A. Plant species segregation in dune ecosystems emphasises competition and species sorting over facilitation. Plant Ecol. Divers. 2015, 8, 113–125. [Google Scholar] [CrossRef]
- Arens, S.M.; Van Kaam-Peters, H.M.E.; Van Boxel, J.H. Air flow over foredunes and implications for sand transport. Earth Surf. Process. Landforms 1995, 20, 315–332. [Google Scholar] [CrossRef] [Green Version]
- De Winter, R.C.; Gongriep, F.; Ruessink, B.G. Observations and modeling of alongshore variability in dune erosion at Egmond aan Zee, the Netherlands. Coast. Eng. 2015, 99, 167–175. [Google Scholar] [CrossRef]
- Splinter, K.D.; Kearney, E.T.; Turner, I.L. Drivers of alongshore variable dune erosion during a storm event: Observations and modelling. Coast. Eng. 2018, 131, 31–41. [Google Scholar] [CrossRef]
- Garès, P.A.; Pease, P. Influence of topography on wind speed over a coastal dune and blowout system at Jockey’s Ridge, NC, USA. Earth Surf. Process. Landforms 2015, 40, 853–863. [Google Scholar] [CrossRef]
- Hesp, P.A.; Hyde, R. Flow dynamics and geomorphology of a trough blowout. Sedimentology 1996, 43, 505–525. [Google Scholar] [CrossRef]
- Jungerius, P.D.; der Meulen, F. Erosion processes in a dune landscape along the Dutch coast. Catena 1988, 15, 217–228. [Google Scholar] [CrossRef]
- Jungerius, P.D.; Verheggen, A.J.T.; Wiggers, A.J. The development of blowouts in ‘de blink’, a coastal dune area near Noordwijkerhout, The Netherlands. Earth Surf. Process. Landforms 1981, 6, 375–396. [Google Scholar] [CrossRef]
- Jungerius, P.D.; De Jong, J.H. Variability of water repellence in the dunes along the Dutch coast. Catena 1989, 16, 491–497. [Google Scholar] [CrossRef]
- Siteur, K.; Mao, J.; Nierop, K.; Rietkerk, M.; Dekker, S. Soil water repellency: a potential driver of vegetation dynamics in coastal dunes. Ecosystems 2016. [Google Scholar] [CrossRef]
- Bate, G.; Ferguson, M. Blowouts in coastal foredunes. Landsc. Urban Plan. 1996, 34, 215–224. [Google Scholar] [CrossRef]
- Hesp, P.; Schmutz, P.; Martinez, M.L.M.; Driskell, L.; Orgera, R.; Renken, K.; Revelo, N.A.R.; Orocio, O.A.J. The effect on coastal vegetation of trampling on a parabolic dune. Aeolian Res. 2010, 2, 105–111. [Google Scholar] [CrossRef]
- Acosta, A.T.R.; Jucker, T.; Prisco, I.; Santoro, R. Passive recovery of Mediterranean coastal dunes following limitations to human trampling. In Restoration of Coastal Dunes; Springer: Berlin, Germany, 2013; pp. 187–198. [Google Scholar]
- Arens, S.M.; Slings, Q.; de Vries, C.N. Mobility of a remobilised parabolic dune in Kennemerland, The Netherlands. Geomorphology 2004, 59, 175–188. [Google Scholar] [CrossRef]
- Riksen, M.J.P.M.; Goossens, D.; Huiskes, H.P.J.; Krol, J.; Slim, P.A. Constructing notches in foredunes: Effect on sediment dynamics in the dune hinterland. Geomorphology 2016, 253, 340–352. [Google Scholar] [CrossRef]
- González-Villanueva, R.; Costas, S.; Pérez-Arlucea, M.; Jerez, S.; Trigo, R.M. Impact of atmospheric circulation patterns on coastal dune dynamics, NW Spain. Geomorphology 2013, 185, 96–109. [Google Scholar] [CrossRef] [Green Version]
- Abhar, K.C.; Walker, I.J.; Hesp, P.A.; Gares, P.A. Spatial–temporal evolution of aeolian blowout dunes at Cape Cod. Geomorphology 2015, 236, 148–162. [Google Scholar] [CrossRef]
- Jungerius, P.D.; Witter, J.V.; van Boxel, J.H. The effects of changing wind regimes on the development of blowouts in the coastal dunes of The Netherlands. Landsc. Ecol. 1991, 6, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Neal, A.; Roberts, C.L. Internal structure of a trough blowout, determined from migrated ground-penetrating radar profiles. Sedimentology 2001, 48, 791–810. [Google Scholar] [CrossRef]
- Harris, C. Wind speed and sand movement in a coastal dune environment. Area 1974, 243–249. [Google Scholar]
- Carter, R.W.G.; Hesp, P.A.; Nordstrom, K.F. Erosional landforms in coastal dunes. Coast. Dunes form Process 1990, 217–249. [Google Scholar]
- Barchyn, T.E.; Hugenholtz, C.H. Reactivation of supply-limited dune fields from blowouts: A conceptual framework for state characterization. Geomorphology 2013, 201, 172–182. [Google Scholar] [CrossRef]
- Hails, J.R.; Bennett, J. Wind and sediment movement in coastal dune areas. In Proceedings of the 17th Internattional Coastal Engineering Conference; ASCE: New York, NY, USA, 1981; pp. 1565–1575. [Google Scholar]
- Huggett, R.J. Fundamentals of Geomorphology; Routledge: Thames, UK, 2007. [Google Scholar]
- Pluis, J.L.A.; van Boxel, J.H. Wind velocity and algal crusts in dune blowouts. Catena 1993, 20, 581–594. [Google Scholar] [CrossRef] [Green Version]
- Smyth, T.A.G.; Jackson, D.W.T.; Cooper, J.A.G. High resolution measured and modelled three-dimensional airflow over a coastal bowl blowout. Geomorphology 2012, 177, 62–73. [Google Scholar] [CrossRef]
- Jungerius, P.D.; der Meulen, F. The development of dune blowouts, as measured with erosion pins and sequential air photos. Catena 1989, 16, 369–376. [Google Scholar] [CrossRef]
- Miyanishi, K.; Johnson, E.A. Coastal dune succession and the reality of dune processes. Plant Disturb. Ecol. Process response 2007, 249–282. [Google Scholar]
- Maun, M.A. The Biology of Coastal Sand Dunes; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Maun, M.A. Adaptations of plants to burial in coastal sand dunes. Can. J. Bot. 1998, 76, 713–738. [Google Scholar] [CrossRef]
- Zhang, J.; Maun, M.A. Effects of sand burial on seed germination, seedling emergence, survival, and growth of Agropyron psammophilum. Can. J. Bot. 1990, 68, 304–310. [Google Scholar] [CrossRef]
- Cheplick, G.P.; Grandstaff, K. Effects of sand burial on purple sandgrass (Triplasis purpurea): the significance of seed heteromorphism. Plant Ecol. 1997, 133, 79–89. [Google Scholar] [CrossRef]
- Fernández-Pascual, E.; Pérez-Arcoiza, A.; Prieto, J.A.; Díaz, T.E. Environmental filtering drives the shape and breadth of the seed germination niche in coastal plant communities. Ann. Bot. 2017, 119, 1169–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maun, M.A. Adaptations enhancing survival and establishment of seedlings on coastal dune systems. Vegetatio 1994, 111, 59–70. [Google Scholar] [CrossRef]
- McLeod, K.W.; Murphy, P.G. Factors affecting growth of Ptelea trifoliata seedlings. Can. J. Bot. 1983, 61, 2410–2415. [Google Scholar] [CrossRef]
- Hesp, P.A.; Walker, I.J. Three-dimensional æolian dynamics within a bowl blowout during offshore winds: Greenwich Dunes, Prince Edward Island, Canada. Aeolian Res. 2012, 3, 389–399. [Google Scholar] [CrossRef]
- Daubenmire, R.F. Plants and Environment. A Textbook of Plant Autecology; John Wiley & Sons, Inc.: New York, NY, USA, 1947. [Google Scholar]
- Hugenholtz, C.H.; Wolfe, S.A. Morphodynamics and climate controls of two aeolian blowouts on the northern Great Plains, Canada. Earth Surf. Process. Landforms 2006, 31, 1540–1557. [Google Scholar] [CrossRef]
- Durán, O.; Herrmann, H.J. Vegetation against dune mobility. Phys. Rev. Lett. 2006, 97, 188001. [Google Scholar] [CrossRef]
- Tsoar, H.; Blumberg, D.A.N. Formation of parabolic dunes from barchan and transverse dunes along Israel’s Mediterranean coast. Earth Surf. Process. Landforms 2002, 27, 1147–1161. [Google Scholar] [CrossRef]
- Tsoar, H. Sand dunes mobility and stability in relation to climate. Phys. A Stat. Mech. its Appl. 2005, 357, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Yizhaq, H.; Ashkenazy, Y.; Tsoar, H. Why do active and stabilized dunes coexist under the same climatic conditions? Phys. Rev. Lett. 2007, 98, 188001. [Google Scholar] [CrossRef]
- Tsoar, H.; Levin, N.; Porat, N.; Maia, L.P.; Herrmann, H.J.; Tatumi, S.H.; Claudino-Sales, V. The effect of climate change on the mobility and stability of coastal sand dunes in Ceará State (NE Brazil). Quat. Res. 2009, 71, 217–226. [Google Scholar] [CrossRef]
- Feagin, R.A.; Figlus, J.; Zinnert, J.C.; Sigren, J.; Martínez, M.L.; Silva, R.; Smith, W.K.; Cox, D.; Young, D.R.; Carter, G. Going with the flow or against the grain? The promise of vegetation for protecting beaches, dunes, and barrier islands from erosion. Front. Ecol. Environ. 2015, 13, 203–210. [Google Scholar] [CrossRef]
- Feagin, R.A.; Lozada-Bernard, S.M.; Ravens, T.M.; Moller, I.; Yeager, K.M.; Baird, A.H. Does vegetation prevent wave erosion of salt marsh edges? Proc. Natl. Acad. Sci. USA 2009, 106, 10109–10113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stallins, J.A. Stability domains in barrier island dune systems. Ecol. Complex. 2005, 2, 410–430. [Google Scholar] [CrossRef]
- Barchyn, T.E.; Hugenholtz, C.H. Aeolian dune field geomorphology modulates the stabilization rate imposed by climate. J. Geophys. Res. Earth Surf. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.C. The effect of gap dynamics on the size and spatial structure of Solidago sempervirens on primary coastal dunes. J. Veg. Sci. 1995, 6, 837–846. [Google Scholar] [CrossRef]
- Meerkerk, A.L.; Arens, S.M.; Van Lammeren, R.J.A.; Stuiver, H.J. Sand transport dynamics after a foredune breach: A case study from Schoorl, The Netherlands. Geomorphology 2007, 86, 52–60. [Google Scholar] [CrossRef]
- Gares, P.A. Topographic changes associated with coastal dune blowouts at Island Beach State Park, New Jersey. Earth Surf. Process. Landforms 1992, 17, 589–604. [Google Scholar] [CrossRef]
- Van Puijenbroek, M.E.B.; Limpens, J.; de Groot, A.V.; Riksen, M.J.P.M.; Gleichman, M.; Slim, P.A.; van Dobben, H.F.; Berendse, F. Embryo dune development drivers: beach morphology, growing season precipitation, and storms. Earth Surf. Process. Landforms 2017, 42, 1733–1744. [Google Scholar] [CrossRef]
- Balke, T.; Herman, P.M.J.; Bouma, T.J. Critical transitions in disturbance-driven ecosystems: identifying Windows of Opportunity for recovery. J. Ecol. 2014, 102, 700–708. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.L.; Zinnert, J.C.; Young, D.R. Differential response of barrier island dune grasses to species interactions and burial. Plant Ecol. 2017, 218, 609–619. [Google Scholar] [CrossRef]
- Brown, J.K.; Zinnert, J.C.; Young, D.R. Emergent interactions influence functional traits and success of dune building ecosystem engineers. J. Plant Ecol. 2017, 19, 1–13. [Google Scholar] [CrossRef]
- Hosier, P.E.; Cleary, W.J. Cyclic geomorphic patterns of washover on a barrier island in southeastern North Carolina. Environ. Geol. 1977, 2, 23. [Google Scholar] [CrossRef]
- Psuty, N.P. Spatial variation in coastal foredune development. In Coastal Dunes: Geomorphology, Ecology and Management for Conservation: Proceedings of the 3rd European Dune Congress Galway, Ireland, 17–21 June 1992; Carter, R.W.G., Ed.; A.A. Balkema: Rotterdam, The Netherlands, 1992; pp. 3–13. [Google Scholar]
- Maestre, F.T.; Callaway, R.M.; Valladares, F.; Lortie, C.J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 2009, 97, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Liancourt, P.; Callaway, R.M.; Michalet, R. Stress tolerance and competitive-response ability determine the outcome of biotic interactions. Ecology 2005, 86, 1611–1618. [Google Scholar] [CrossRef]
- Werner, B.T. Eolian dunes: computer simulations and attractor interpretation. Geology 1995, 23, 1107–1110. [Google Scholar] [CrossRef]
- Nishimori, H.; Yamasaki, M.; Andersen, K.H. A simple model for the various pattern dynamics of dunes. Int. J. Mod. Phys. B 1998, 12, 257–272. [Google Scholar] [CrossRef]
- Momiji, H.; Carretero-Gonzalez, R.; Bishop, S.R.; Warren, A. Simulation of the effect of wind speedup in the formation of transverse dune fields. Earth Surf. Process. Landforms 2000, 25, 905–918. [Google Scholar] [CrossRef] [Green Version]
- Baas, A.C.W. Chaos, fractals and self-organization in coastal geomorphology: simulating dune landscapes in vegetated environments. Geomorphology 2002, 48, 309–328. [Google Scholar] [CrossRef]
- Keijsers, J.G.S.; De Groot, A.V.; Riksen, M. Modeling the biogeomorphic evolution of coastal dunes in response to climate change. J. Geophys. Res. Earth Surf. 2016, 121, 1161–1181. [Google Scholar] [CrossRef]
- Mayaud, J.R.; Bailey, R.M.; Giles, F.S. A coupled vegetation/sediment-transport model for dryland environments. J. Geophys. Res. Earth Surf. 2017, 122, 875–900. [Google Scholar] [CrossRef]
- Yan, N.; Baas, A.C.W. Environmental controls, morphodynamic processes, and ecogeomorphic interactions of barchan to parabolic dune transformations. Geomorphology 2017, 278, 209–237. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, P.M.; Arens, S.M.; Van Boxel, J.H. Aeolian processes across transverse dunes. II: Modelling the sediment transport and profile development. Earth Surf. Process. Landforms 1999, 24, 319–333. [Google Scholar] [CrossRef]
- Van Boxel, J.H.; Arens, S.M.; Van Dijk, P.M. van; others Aeolian processes across transverse dunes. I: Modelling the air flow. Earth Surf. Process. Landforms 1999, 24, 255–270. [Google Scholar] [CrossRef]
- Arens, S.M.; Baas, A.C.W.; Van Boxel, J.H.; Kalkman, C. Influence of reed stem density on foredune development. Earth Surf. Process. Landforms 2001, 26, 1161–1176. [Google Scholar] [CrossRef]
- Durán, O.; Parteli, E.J.R.; Herrmann, H.J. A continuous model for sand dunes: Review, new developments and application to barchan dunes and barchan dune fields. Earth Surf. Process. Landforms 2010, 35, 1591–1600. [Google Scholar] [CrossRef]
- Johnson, E.A.; Martin, Y.E. Coastal Dunes and Vegetation Dynamics. In A Biogeoscience Approach to Ecosystems; Cambridge University Press: Cambridge, UK, 2016; pp. 435–455. [Google Scholar]
- Jackson, D.W.T.; Beyers, J.H.M.; Lynch, K.; Cooper, J.A.G.; Baas, A.C.W.; Delgado-Fernandez, I. Investigation of three-dimensional wind flow behaviour over coastal dune morphology under offshore winds using computational fluid dynamics (CFD) and ultrasonic anemometry. Earth Surf. Process. Landforms 2011, 36, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Smyth, T.A.G. A review of Computational Fluid Dynamics (CFD) airflow modelling over aeolian landforms. Aeolian Res. 2016, 22, 153–164. [Google Scholar] [CrossRef]
- Bagnold, R.A. The Physics of Blown Sand and Desert Dunes; Chapman and Hall: London, UK, 1941. [Google Scholar]
- Larsen, L.G.; Eppinga, M.B.; Passalacqua, P.; Getz, W.M.; Rose, K.A.; Liang, M. Appropriate complexity landscape modeling. Earth-Sci. Rev. 2016, 160, 111–130. [Google Scholar] [CrossRef]
- Coco, G.; Zhou, Z.; van Maanen, B.; Olabarrieta, M.; Tinoco, R.; Townend, I. Morphodynamics of tidal networks: Advances and challenges. Mar. Geol. 2013, 346, 1–16. [Google Scholar] [CrossRef]
- Van Oorschot, M.; Kleinhans, M.; Geerling, G.; Middelkoop, H. Distinct patterns of interaction between vegetation and morphodynamics. Earth Surf. Process. Landforms 2016, 41, 791–808. [Google Scholar] [CrossRef]
- Schwarz, C.; Gourgue, O.; van Belzen, J.; Zhu, Z.; Bouma, T.J.; van de Koppel, J.; Ruessink, G.; Claude, N.; Temmerman, S. Self-organization of a biogeomorphic landscape controlled by plant life-history traits. Nat. Geosci. 2018, 1–6. [Google Scholar] [CrossRef]
- Delgado-Fernandez, I.; Smyth, T.A.G.; Jackson, D.W.T.; Smith, A.B.; Davidson-Arnott, R.G.D. Event-scale dynamics of a parabolic dune and its relevance for meso-scale evolution. J. Geophys. Res. Earth Surf. 2018. [Google Scholar] [CrossRef]
- Rader, A.M.; Pickart, A.J.; Walker, I.J.; Hesp, P.A.; Bauer, B.O. Foredune morphodynamics and sediment budgets at seasonal to decadal scales: Humboldt Bay National Wildlife Refuge, California, USA. Geomorphology 2018, 318, 69–87. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwarz, C.; Brinkkemper, J.; Ruessink, G. Feedbacks between Biotic and Abiotic Processes Governing the Development of Foredune Blowouts: A Review. J. Mar. Sci. Eng. 2019, 7, 2. https://doi.org/10.3390/jmse7010002
Schwarz C, Brinkkemper J, Ruessink G. Feedbacks between Biotic and Abiotic Processes Governing the Development of Foredune Blowouts: A Review. Journal of Marine Science and Engineering. 2019; 7(1):2. https://doi.org/10.3390/jmse7010002
Chicago/Turabian StyleSchwarz, Christian, Joost Brinkkemper, and Gerben Ruessink. 2019. "Feedbacks between Biotic and Abiotic Processes Governing the Development of Foredune Blowouts: A Review" Journal of Marine Science and Engineering 7, no. 1: 2. https://doi.org/10.3390/jmse7010002
APA StyleSchwarz, C., Brinkkemper, J., & Ruessink, G. (2019). Feedbacks between Biotic and Abiotic Processes Governing the Development of Foredune Blowouts: A Review. Journal of Marine Science and Engineering, 7(1), 2. https://doi.org/10.3390/jmse7010002