A 2D Tide-Averaged Model for the Long-Term Evolution of an Idealized Tidal Basin-Inlet-Delta System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrodynamics
2.2. Sediment Transport and Morphodynamics
2.3. Boundary Conditions and Numerical Implementation
2.4. Comparison with Delft3D
3. Results
3.1. Hydrodynamics
3.2. Morphodynamics
3.3. Sensitivity Analysis
3.4. Considerations about the Numerics
4. Discussion
4.1. Hydrodynamics, Jet Dynamics, and Residual Currents
4.2. Morphodynamics
4.3. Model Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Coco, G.; Zhou, Z.; van Maanen, B.; Olabarrieta, M.; Tinoco, R.; Townend, I. Morphodynamics of tidal networks: Advances and challenges. Mar. Geol. 2013, 346, 1–16. [Google Scholar] [CrossRef]
- Elko, N.; Feddersen, F.; Foster, D.L.; Holman, R.A.; McNinch, J.; Ozkan-Haller, H.T.; Plant, N.G.; Raubenheimer, B.; Elgar, S.; Hay, A.E.; et al. The Future of Nearshore Processes Research. In Proceedings of the 2014 Fall Meeting, San Francisco, CA, USA, 15–19 December 2014; AGU: Washington, DC, USA, 2014; p. OS22A-08. [Google Scholar]
- Dissanayake, D.M.P.K.; Ranasinghe, R.; Roelvink, J.A. The morphological response of large tidal inlet/basin systems to relative sea level rise. Clim. Chang. 2012, 113, 253–276. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, D.M.P.K.; Roelvink, J.A.; van der Wegen, M. Modelled channel patterns in a schematized tidal inlet. Coast. Eng. 2009, 56, 1069–1083. [Google Scholar] [CrossRef]
- van Maanen, B.; Coco, G.; Bryan, K.R.; Friedrichs, C.T. Modeling the morphodynamic response of tidal embayments to sea-level rise. Ocean Dyn. 2013, 63, 1249–1262. [Google Scholar] [CrossRef]
- van Maanen, B.; Coco, G.; Bryan, K.R. Modelling the effects of tidal range and initial bathymetry on the morphological evolution of tidal embayments. Geomorphology 2013, 191, 23–34. [Google Scholar] [CrossRef]
- Dissanayake, D.M.P.K.; Ranasinghe, R.; Roelvink, J.A. Effect of Sea Level Rise in Tidal Inlet Evolution: A Numerical Modelling Approach. J. Coast. Res. 2009, II, 942–946. [Google Scholar]
- van Leeuwen, S.M.; van der Vegt, M.; de Swart, H.E. Morphodynamics of ebb-tidal deltas: A model approach. Estuar. Coast. Shelf Sci. 2003, 57, 899–907. [Google Scholar] [CrossRef]
- Ridderinkhof, W.; de Swart, H.E.; van der Vegt, M.; Hoekstra, P. Influence of the back-barrier basin length on the geometry of ebb-tidal deltas. Ocean Dyn. 2014, 64, 1333–1348. [Google Scholar] [CrossRef]
- Lesser, G.R.; Roelvink, J.A.; van Kester, J.A.T.M.; Stelling, G.S. Development and validation of a three-dimensional morphological model. Coast. Eng. 2004, 51, 883–915. [Google Scholar] [CrossRef]
- Dal Monte, L.; Di Silvio, G. Sediment concentration in tidal lagoons. A contribution to long-term morphological modelling. J. Mar. Syst. 2004, 51, 243–255. [Google Scholar] [CrossRef]
- Di Silvio, G.; Dall’Angelo, C.; Bonaldo, D.; Fasolato, G. Long-term model of planimetric and bathymetric evolution of a tidal lagoon. Cont. Shelf Res. 2010, 30, 894–903. [Google Scholar] [CrossRef]
- Bonaldo, D.; Di Silvio, G. Historical evolution of a micro-tidal lagoon simulated by a 2-D schematic model. Geomorphology 2013, 201, 380–396. [Google Scholar] [CrossRef]
- Özsoy, E.; Ünlüata, Ü. Ebb-tidal flow characteristics near inlets. Estuar. Coast. Shelf Sci. 1982, 14, 251–263. [Google Scholar] [CrossRef]
- Spearman, J. The development of a tool for examining the morphological evolution of managed realignment sites. Cont. Shelf Res. 2011, 31, S199–S210. [Google Scholar] [CrossRef]
- Gatto, V.M.; van Prooijen, B.C.; Wang, Z.B. Net sediment transport in tidal basins: Quantifying the tidal barotropic mechanisms in a unified framework. Ocean Dyn. 2017, 67, 1385–1406. [Google Scholar] [CrossRef]
- Mariotti, G. Marsh channel morphological response to sea level rise and sediment supply. Estuar. Coast. Shelf Sci. 2018, 209, 89–101. [Google Scholar] [CrossRef]
- Tambroni, N.; Seminara, G. Are inlets responsible for the morphological degradation of Venice Lagoon? J. Geophys. Res. Earth Surf. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Engelund, F.; Hansen, E. A Monograph on Sediment Transport in Alluvial Streams; Tekniskforlag Skelbrekgade 4 Copenhagen V Denmark: Copenhagen, Denmark, 1967. [Google Scholar]
- Arons, A.B.; Stommel, H. A mixing-length theory of tidal flushing. Eos Trans. Am. Geophys. Union 1951, 32, 419–421. [Google Scholar] [CrossRef]
- Zimmerman, J.T.F. Mixing and flushing of tidal embayments in the Western Dutch Wadden Sea, part II: Analysis of mixing processes. Neth. J. Sea Res. 1976, 10, 397–439. [Google Scholar] [CrossRef]
- Geyer, W.R.; Signell, R.P. A Reassessment of the Role of Tidal Dispersion in Estuaries and Bays. Estuaries 1992, 15, 97–108. [Google Scholar] [CrossRef]
- Cayocca, F. Long-term morphological modeling of a tidal inlet: The Arcachon Basin, France. Coast. Eng. 2001, 42, 115–142. [Google Scholar] [CrossRef]
- Dietrich, W.E.; Smith, J.D. Influence of the point bar on flow through curved channels. Water Resour. Res. 1983, 19, 1173–1192. [Google Scholar] [CrossRef]
- Dissanayake, P.K. Modelling Morphological Response of Large Tidal Inlet Systems to Sea Level Rise UNESCO-IHE PhD Thesis; CRC Press: Boca Raton, FL, USA, 2011; ISBN 978-1-4665-5280-7. [Google Scholar]
- Van Goor, M.A.; Zitman, T.J.; Wang, Z.B.; Stive, M.J.F. Impact of sea-level rise on the morphological equilibrium state of tidal inlets. Mar. Geol. 2003, 202, 211–227. [Google Scholar] [CrossRef]
- Fagherazzi, S.; Wiberg, P.L. Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow intertidal basins. J. Geophys. Res.-Earth Surf. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Mariotti, G.; Fagherazzi, S. Wind waves on a mudflat: The influence of fetch and depth on bed shear stresses. Cont. Shelf Res. 2013, 60, S99–S110. [Google Scholar] [CrossRef]
- Fagherazzi, S.; Kirwan, M.L.; Mudd, S.M.; Guntenspergen, G.R.; Temmerman, S.; D’Alpaos, A.; van de Koppel, J.; Rybczyk, J.M.; Reyes, E.; Craft, C.; et al. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Rev. Geophys. 2012, 50, RG1002. [Google Scholar] [CrossRef]
- Mariotti, G.; Canestrelli, A. Long-term morphodynamics of muddy backbarrier basins: Fill in or empty out? Water Resour. Res. 2017, 53, 7029–7054. [Google Scholar] [CrossRef]
- Liang, M.; Voller, V.R.; Paola, C. A reduced-complexity model for river delta formation—Part 1: Modeling deltas with channel dynamics. Earth Surf. Dyn. 2015, 3, 67–86. [Google Scholar] [CrossRef]
- Smith, J.M.; Sherlock, A.R.; Resio, D.T. STWAVE: Steady-State Spectral Wave Model: User’s Manual for STWAVE Version 3.0; Supplemental Report ERDC/CHL SR-01-1; U.S. Army Engineer Research and Development: Saint Louis, MO, USA, 2001. [Google Scholar]
Parameter | Description | Value | Source |
---|---|---|---|
r | Astronomic tidal range | 2 m | fixed |
n | Manning friction coefficient | 0.02 m−1/3s | fixed |
d50 | Median grain size | 250 μm | fixed |
ρbulk | Sediment dry bulk density | 1600 kg/m3 | fixed |
γ | Water density | 1030 | fixed |
T | Tidal period | 12 h | fixed |
Δt | Maximum time step | 2 year | fixed |
Δx | Spatial resolution | 100 m | fixed |
Diffusion step for momentum correction in the along-flow direction | 10 m2 | calibrated | |
Diffusion step for momentum correction in the transverse-flow direction | 1 m2 | calibrated | |
αs | Tidal dispersion coefficient | 1 | calibrated |
μ | Coefficient for downslope sediment transport | 15 | calibrated |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariotti, G.; Murshid, S. A 2D Tide-Averaged Model for the Long-Term Evolution of an Idealized Tidal Basin-Inlet-Delta System. J. Mar. Sci. Eng. 2018, 6, 154. https://doi.org/10.3390/jmse6040154
Mariotti G, Murshid S. A 2D Tide-Averaged Model for the Long-Term Evolution of an Idealized Tidal Basin-Inlet-Delta System. Journal of Marine Science and Engineering. 2018; 6(4):154. https://doi.org/10.3390/jmse6040154
Chicago/Turabian StyleMariotti, Giulio, and Shamim Murshid. 2018. "A 2D Tide-Averaged Model for the Long-Term Evolution of an Idealized Tidal Basin-Inlet-Delta System" Journal of Marine Science and Engineering 6, no. 4: 154. https://doi.org/10.3390/jmse6040154
APA StyleMariotti, G., & Murshid, S. (2018). A 2D Tide-Averaged Model for the Long-Term Evolution of an Idealized Tidal Basin-Inlet-Delta System. Journal of Marine Science and Engineering, 6(4), 154. https://doi.org/10.3390/jmse6040154