The Role of Latent Heat Flux in Tropical Cyclogenesis over the Western North Pacific: Comparison of Developing versus Non-Developing Disturbances
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
3.1. LHF and Bulk Variables
3.2. Thermodynamic and Dynamic Profiles
4. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tory, K.J.; Frank, W.M. Tropical cyclone formation. In Global Perspectives on Tropical Cyclones, from Science to Mitigation; Chan, J.C.L., Kepert, J.D., Eds.; World Scientific: Singapore, 2010; pp. 55–92. [Google Scholar]
- Li, T. Synoptic and climatic aspects of tropical cyclogenesis in western North Pacific. In Cyclones: Formation, Triggers and Control; Oouchi, K., Fudeyasu, H., Eds.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2012; pp. 61–94. [Google Scholar]
- Montgomery, M.T. Recent advances in tropical cyclogenesis. In Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction; Mohanty, U.C., Gopalakrishnan, S.G., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 561–587. [Google Scholar]
- Hennon, C.C.; Papin, P.P.; Zarzar, C.M.; Michael, J.R.; Caudill, J.A.; Douglas, C.R.; Groetsema, W.C.; Lacy, J.H.; Maye, Z.D.; Reid, J.L.; et al. Tropical cloud cluster climatology, variability, and genesis productivity. J. Clim. 2013, 26, 3046–3066. [Google Scholar] [CrossRef]
- Gray, W.M. Global view of the origin of tropical disturbances and storms. Mon. Weather Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- Gray, W.M. The formation of tropical cyclones. Meteorol. Atmos. Phys. 1998, 67, 37–69. [Google Scholar] [CrossRef]
- McBride, J.L. Observational analysis of tropical cyclone formation. Part III: Budget analysis. J. Atmos. Sci. 1981, 38, 1152–1166. [Google Scholar] [CrossRef]
- McBride, J.L.; Zehr, R. Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci. 1981, 38, 1132–1151. [Google Scholar] [CrossRef]
- Lee, C.-S. Observational analysis of tropical cyclogenesis in the western North Pacific. Part I: Structural evolutions of cloud clusters. J. Atmos. Sci. 1989, 46, 2580–2598. [Google Scholar] [CrossRef]
- Lee, C.-S. Observational analysis of tropical cyclogenesis in the western North Pacific. Part II: Budget analysis. J. Atmos. Sci. 1989, 46, 2599–2616. [Google Scholar] [CrossRef]
- Chan, J.C.L.; Kwok, R.H.F. Tropical cyclone genesis in a global numerical weather prediction model. Mon. Weather Rev. 1999, 127, 611–624. [Google Scholar] [CrossRef]
- Fu, B.; Peng, M.S.; Li, T.; Stevens, D.E. Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Mon. Weather Rev. 2012, 140, 1067–1080. [Google Scholar] [CrossRef]
- Guo, Z.; Li, W.; Wang, L.; Liu, H. Comparison of developing and non-developing tropical disturbances over the South China Sea. J. Trop. Oceanogr. 2015, 34, 36–47, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Peng, M.S.; Fu, B.; Li, T.; Stevens, D.E. Developing versus nondeveloping disturbances for tropical cyclone formation. Part I: North Atlantic. Mon. Weather Rev. 2012, 140, 1047–1066. [Google Scholar] [CrossRef]
- Wang, L.; Lau, K.-H.; Zhang, Q.-H.; Fung, C.-H. Observation of non-developing and developing tropical disturbances over the South China Sea using SSM/I satellite. Geophys. Res. Lett. 2008, 35, L10802. [Google Scholar] [CrossRef]
- Smith, R.K.; Montgomery, M.T. Observations of the convective environment in developing and non-developing tropical disturbances. Q. J. R. Meteorol. Soc. 2012, 138, 1721–1739. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z. Thermodynamic aspects of tropical cyclone formation. J. Atmos. Sci. 2012, 69, 2433–2451. [Google Scholar] [CrossRef]
- Kerns, B.W.; Chen, S.S. Cloud clusters and tropical cyclogenesis: Developing and nondeveloping systems and their large-scale environment. Mon. Weather Rev. 2013, 141, 192–210. [Google Scholar] [CrossRef]
- Park, M.-S.; Elsberry, R.L. Latent heating and cooling rates in developing and nondeveloping tropical disturbances during TCS-08: TRMM PR and ELDORA retrievals. J. Atmos. Sci. 2013, 70, 15–35. [Google Scholar] [CrossRef]
- Chang, M.; Ho, C.-H.; Park, M.-S.; Kim, J.; Ahn, M.-H. Multiday evolution of convective bursts during western North Pacific tropical cyclone development and nondevelopment using geostationary satellite measurements. J. Geophys. Res.-Atmos. 2017, 122, 1635–1649. [Google Scholar] [CrossRef]
- Zawislak, J.; Zipser, E.J. A multisatellite investigation of the convective properties of developing and nondeveloping tropical disturbances. Mon. Weather Rev. 2014, 142, 4624–4645. [Google Scholar] [CrossRef]
- Komaromi, W.A. An investigation of composite dropsonde profiles for developing and nondeveloping tropical waves during the 2010 PREDICT field campaign. J. Atmos. Sci. 2013, 70, 542–558. [Google Scholar] [CrossRef]
- Zawislak, J.; Zipser, E.J. Analysis of the thermodynamic properties of developing and nondeveloping tropical disturbances using a comprehensive dropsonde dataset. Mon. Weather Rev. 2014, 142, 1250–1264. [Google Scholar] [CrossRef]
- Gao, S.; Chen, B.; Li, T.; Wu, N.; Deng, W. AIRS-observed warm core structures of tropical cyclones over the western North Pacific. Dynam. Atmos. Oceans 2017, 77, 100–106. [Google Scholar] [CrossRef]
- Fritz, C.; Wang, Z.; Nesbitt, S.W.; Dunkerton, T.J. Vertical structure and contribution of different types of precipitation during Atlantic tropical cyclone formation as revealed by TRMM PR. Geophys. Res. Lett. 2016, 43, 894–901. [Google Scholar] [CrossRef]
- Ooyama, K.V. Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci. 1969, 26, 3–40. [Google Scholar] [CrossRef]
- Emanuel, K.A. An air-sea interaction theory for tropical cyclones. Part I: Steady state maintenance. J. Atmos. Sci. 1986, 43, 585–604. [Google Scholar] [CrossRef]
- Fritz, C.; Wang, Z. Water vapor budget in a developing tropical cyclone and its implication for tropical cyclone formation. J. Atmos. Sci. 2014, 71, 4321–4332. [Google Scholar] [CrossRef]
- Murthy, V.S.; Boos, W.R. Role of surface enthalpy fluxes in idealized simulations of tropical depression spinup. J. Atmos. Sci. 2018, 75, 1811–1831. [Google Scholar] [CrossRef]
- Lin, I.-I.; Chen, C.-H.; Pun, I.-F.; Liu, W.T.; Wu, C.-C. Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys. Res. Lett. 2009, 36, L03817. [Google Scholar] [CrossRef]
- Lin, I.-I.; Pun, I.-F.; Lien, C.-C. “Category-6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophys. Res. Lett. 2014, 41, 8547–8553. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Chiu, L.S. Surface latent heat flux and rainfall associated with rapidly intensifying tropical cyclones over the western North Pacific. Int. J. Remote Sens. 2010, 31, 4699–4710. [Google Scholar] [CrossRef]
- Gao, S.; Zhai, S.; Chiu, L.S.; Xia, D. Satellite air-sea enthalpy flux and intensity change of tropical cyclones over the western North Pacific. J. Appl. Meteorol. Climatol. 2016, 55, 425–444. [Google Scholar] [CrossRef]
- Gao, S.; Zhai, S.; Chen, B.; Li, T. Water budget and intensity change of tropical cyclones over the western North Pacific. Mon. Weather Rev. 2017, 145, 3009–3023. [Google Scholar] [CrossRef]
- Jaimes, B.; Shay, L.K.; Uhlhorn, E.W. Enthalpy and momentum fluxes during Hurricane Earl relative to underlying ocean features. Mon. Weather Rev. 2015, 143, 111–131. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, P.; Zhang, F.; Song, Q. CloudNet: Ground-based cloud classification with deep convolutional neural network. Geophys. Res. Lett. 2018, 45, 8665–8672. [Google Scholar] [CrossRef]
- Wentz, F.J.; Scott, J.; Hoffman, R.; Leidner, M.; Atlas, R.; Ardizzone, J. Remote Sensing Systems Cross-Calibrated Multi-Platform (CCMP) 6-Hourly Ocean Vector Wind Analysis Product on 0.25 Deg Grid, Version 2.0. Remote Sensing Systems, Santa Rosa, CA, USA. Available online: www.remss.com/measurements/ccmp (accessed on 10 May 2016).
- Atlas, R.; Hoffman, R.N.; Ardizzone, J.; Leidner, S.M.; Jusem, J.C.; Smith, D.K.; Gombos, D. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Amer. Meteorol. Soc. 2011, 92, 157–174. [Google Scholar] [CrossRef]
- Buchanan, S.; Misra, V.; Bhardwaj, A. Integrated kinetic energy of Atlantic tropical cyclones in a global ocean surface wind analysis. Int. J. Climatol. 2018, 38, 2651–2661. [Google Scholar] [CrossRef]
- Bentamy, A.; Grodsky, S.A.; Katsaros, K.; Mestas-Nuez, A.M.; Blanke, B.; Desbiolles, F. Improvement in air-sea flux estimates derived from satellite observations. Int. J. Remote Sens. 2013, 34, 5243–5261. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- NOAA/NCEP. NCEP FNL Operational Model Global Tropospheric Analyses, Continuing from July 1999 (Updated Daily). NCAR Computational and Information Systems Laboratory Research Data Archive. Available online: https://doi.org/10.5065/D6M043C6 (accessed on 28 April 2014).
- Gao, S.; Zhai, S.; Li, T.; Chen, Z. On the asymmetric distribution of shear-relative typhoon rainfall. Meteorol. Atmos. Phys. 2018, 130, 11–22. [Google Scholar] [CrossRef]
- Gao, S.; Wang, D.; Hong, H.; Wu, N.; Li, T. Evaluation of warm-core structure in reanalysis and satellite data sets using HS3 dropsonde observations: A case study of Hurricane Edouard (2014). J. Geophys. Res.-Atmos. 2018, 123, 6713–6731. [Google Scholar] [CrossRef]
- NOAA/NCEP. Satellite Historical Documentation. Available online: http://www.emc.ncep.noaa.gov/mmb/data_processing/Satellite_Historical_Documentation.htm (accessed on 4 October 2018).
- Zong, H.; Wu, L. Synoptic-scale influences on tropical cyclone formation within the western North Pacific monsoon trough. Mon. Weather Rev. 2015, 143, 3421–3433. [Google Scholar] [CrossRef]
- Kerns, B.; Greene, K.; Zipser, E. Four years of tropical ERA-40 vorticity maxima tracks. Part I: Climatology and vertical vorticity structure. Mon. Weather Rev. 2008, 136, 4301–4319. [Google Scholar] [CrossRef]
- Kurihara, Y.; Bender, M.A.; Ross, R.J. An initialization scheme of hurricane models by vortex specification. Mon. Weather Rev. 1993, 121, 2030–2045. [Google Scholar] [CrossRef]
- Lander, M.A. Description of a monsoon gyre and its effects on the tropical cyclones in the western North Pacific during August 1991. Weather Forecast. 1994, 9, 640–654. [Google Scholar] [CrossRef]
- Wu, L.; Wen, Z.; Huang, R.; Wu, R. Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific. Mon. Weather Rev. 2012, 140, 140–150. [Google Scholar] [CrossRef]
- Yoshida, R.; Ishikawa, H. Environmental factors contributing to tropical cyclone genesis over the western North Pacific. Mon. Weather Rev. 2013, 141, 451–467. [Google Scholar] [CrossRef]
- Cao, X.; Li, T.; Peng, M.; Chen, W.; Chen, G. Effects of the monsoon trough intraseasonal oscillation on tropical cyclogenesis over the western North Pacific. J. Atmos. Sci. 2014, 71, 4639–4660. [Google Scholar] [CrossRef]
- Cao, X.; Li, T.; Peng, M.; Chen, W.; Chen, G. Effects of monsoon trough interannual variation on tropical cyclogenesis over the western North Pacific. Geophys. Res. Lett. 2014, 41, 4332–4339. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Chen, G.; Huang, R.; Shen, X. Large-scale circulation patterns favorable to tropical cyclogenesis over the western North Pacific and associated barotropic energy conversions. Int. J. Climatol. 2014, 34, 216–227. [Google Scholar] [CrossRef]
- Zong, H.; Wu, L. Re-examination of tropical cyclone formation in monsoon troughs over the western North Pacific. Adv. Atmos. Sci. 2015, 32, 924–934. [Google Scholar] [CrossRef]
- Guo, B.; Ge, X. Monsoon trough influences on multiple tropical cyclone events in the western North Pacific. Atmos. Sci. Lett. 2018, 19, e851. [Google Scholar] [CrossRef]
- Fritz, C.; Wang, Z. A numerical study of the impacts of dry air on tropical cyclone formation: A development case and a nondevelopment case. J. Atmos. Sci. 2013, 70, 91–111. [Google Scholar] [CrossRef]
- Wang, Z.; Hankes, I. Characteristics of tropical easterly wave pouches during tropical cyclone formation. Mon. Weather Rev. 2014, 142, 626–633. [Google Scholar] [CrossRef]
- Schubert, W.H.; Rozoff, C.M.; Vigh, J.L.; McNoldy, B.D.; Kossin, J.P. On the distribution of subsidence in the hurricane eye. Q. J. R. Meteorol. Soc. 2007, 133, 595–605. [Google Scholar] [CrossRef] [Green Version]
- Beljaars, A. NUMERICAL MODELS|Parameterization of Physical Processes: Turbulence and Mixing. In Encyclopedia of Atmospheric Sciences, 2nd ed.; North, G.R., Pyle, J., Zhang, F., Eds.; Academic Press: New York, NY, USA, 2015; pp. 200–211. [Google Scholar]
- Dolling, K.; Barnes, G.M. Warm core formation in Tropical Storm Humberto (2001). Mon. Weather Rev. 2012, 140, 1177–1190. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Jia, S.; Wan, Y.; Li, T.; Zhai, S.; Shen, X. The Role of Latent Heat Flux in Tropical Cyclogenesis over the Western North Pacific: Comparison of Developing versus Non-Developing Disturbances. J. Mar. Sci. Eng. 2019, 7, 28. https://doi.org/10.3390/jmse7020028
Gao S, Jia S, Wan Y, Li T, Zhai S, Shen X. The Role of Latent Heat Flux in Tropical Cyclogenesis over the Western North Pacific: Comparison of Developing versus Non-Developing Disturbances. Journal of Marine Science and Engineering. 2019; 7(2):28. https://doi.org/10.3390/jmse7020028
Chicago/Turabian StyleGao, Si, Shengbin Jia, Yanyu Wan, Tim Li, Shunan Zhai, and Xinyong Shen. 2019. "The Role of Latent Heat Flux in Tropical Cyclogenesis over the Western North Pacific: Comparison of Developing versus Non-Developing Disturbances" Journal of Marine Science and Engineering 7, no. 2: 28. https://doi.org/10.3390/jmse7020028
APA StyleGao, S., Jia, S., Wan, Y., Li, T., Zhai, S., & Shen, X. (2019). The Role of Latent Heat Flux in Tropical Cyclogenesis over the Western North Pacific: Comparison of Developing versus Non-Developing Disturbances. Journal of Marine Science and Engineering, 7(2), 28. https://doi.org/10.3390/jmse7020028