Impact of Anthropogenic Climate Change on United States Major Hurricane Landfall Frequency
Abstract
:1. Introduction
2. Methods
2.1. Definition of Landfall and Observation Analysis
2.2. Model Simulations
- Identify which buffer distance applied to the six-hourly HURDAT2 matches the observed recorded MH landfall frequency.
- Compare the MH landfall frequencies of the 6-houly HURDAT2, early control simulations, and late control simulations for each buffer distance to assess how closely HiFLOR’s MH landfall statistics match those in the observational data.
- Compare the simulated frequencies of MH landfall drought events among the control simulations with different buffer distance to determine the effects of anthropogenic forcing on the length of MH landfall drought in the U.S., and to identify the dependency of the results on buffer distance.
3. Results
3.1. Sensitivity of Buffer Distance to United States MH Landfall Frequencies
3.2. Impact of Anthropogenic Climate Change on MH Landfall Drought
4. Summary and Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Colorado State University (CSU). Real-time North Atlantic Ocean Statistics by Storm for 2017. Available online: https://tropical.colostate.edu/media/sites/111/2017/11/2017-11.pdf (accessed on 4 May 2019).
- Klotzbach, P.J.; Bowen, S.G.; Pielke, R.; Bell, M. Continental U.S. Hurricane Landfall Frequency and Associated Damage: Observations and Future Risks. Bull. Am. Meteorol. Soc. 2018, 99, 1359–1376. [Google Scholar] [CrossRef] [Green Version]
- National Center for Environmental Information, National Oceanic and Atmospheric Administration. Billion-Dollar Weather and Climate Disasters: Table of Events. Available online: https://www.ncdc.noaa.gov/billions/events/US/1980-2018 (accessed on 4 May 2019).
- Blake, E.S.; Zelinsky, D.A. Hurricane Harvey. National Hurricane Center Tropical Cyclone Rep. AL092017; 2018; 76p. Available online: https://www.nhc.noaa.gov/data/tcr/AL092017_Harvey.pdf (accessed on 4 May 2019).
- Emanuel, K. Assessing the present and future probability of hurricane Harvey’s rainfall. Proc. Natl. Acad. Sci. USA 2017, 114, 12681–12684. [Google Scholar] [CrossRef] [PubMed]
- Miami: National Weather Servic. Costliest U.S. Tropical Cyclones Tables Updated. Available online: https://www.nhc.noaa.gov/news/UpdatedCostliest.pdf (accessed on 4 May 2019).
- Cangialosi, J.P.; Latto, A.S.; Berg, R. Hurricane Irma. National Hurricane Center Tropical Cyclone Rep. AL112017; 2018; 111p. Available online: https://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf (accessed on 4 May 2019).
- Kishore, N.; Marqués, D.; Mahmud, A.; Kiang, M.V.; Rodriguez, I.; Fuller, A.; Ebner, P.; Sorensen, C.; Racy, F.; Lemery, J.; et al. Mortality in Puerto Rico after Hurricane Maria. N. Engl. J. Med. 2018, 379, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Hurricane Research Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration. Detailed List of Continental United States Hurricane Impacts/Landfalls. Available online: http://www.aoml.noaa.gov/hrd/hurdat/UShurrs_detailed.html (accessed on 4 May 2019).
- University of Arizona. Cycles of Atlantic Hurricanes; Global Warming and Hurricanes; Damage and Death Trends. Available online: http://www.atmo.arizona.edu/students/courselinks/fall16/atmo336s2/lectures/sec2/hurricanes3.html (accessed on 4 May 2019).
- Hall, T.; Hereid, K. The frequency and duration of U.S. hurricane droughts. Geophys. Res. Lett. 2015, 42, 3482–3485. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K.A.; Nolan, D.S. Tropical Cyclone Activity and the Climate System. In Proceedings of the 26th Conference on Hurricanes and Tropical Meteorology, Miami, FL, USA, 3–7 May 2004. [Google Scholar]
- Vecchi, G.A.; Delworth, T.; Gudgel, R.; Kapnick, S.; Rosati, A.; Wittenberg, A.T.; Zeng, F.; Anderson, W.; Balaji, V.; Dixon, K.; et al. On the Seasonal Forecasting of Regional Tropical Cyclone Activity. J. Clim. 2014, 27, 7994–8016. [Google Scholar] [CrossRef]
- Hall, T.; Yonekura, E. North American Tropical Cyclone Landfall and SST: A Statistical Model Study. J. Clim. 2013, 26, 8422–8439. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Msadek, R.; Anderson, W.; Chang, Y.; Delworth, T.; Dixon, K.; Zhang, S. Multiyear Predictions of North Atlantic Hurricane Frequency: Promise and Limitations. J. Clim. 2013, 26, 5337–5357. [Google Scholar] [CrossRef]
- Wang, R.; Wu, L. Climate Changes of Atlantic Tropical Cyclone Formation Derived from Twentieth-Century Reanalysis. J. Clim. 2013, 26, 8995–9005. [Google Scholar] [CrossRef]
- Hart, R.E.; Chavas, D.R.; Guishard, M.P. The Arbitrary Definition of the Current Atlantic Major Hurricane Landfall Drought. Bull. Am. Meteorol. Soc. 2016, 97, 713–722. [Google Scholar] [CrossRef]
- Emanuel, K.; Sundararajan, R.; Williams, J. Hurricanes and Global Warming: Results from Downscaling IPCC AR4 Simulations. Bull. Am. Meteorol. Soc. 2008, 89, 347–368. [Google Scholar] [CrossRef] [Green Version]
- Knutson, T.; McBride, J.L.; Chan, J.; Emanuel, K.; Holland, G.; Landsea, C.; Held, I.; Kossin, J.P.; Srivastava, A.K.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010, 3, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Walsh, K.J.E.; McBride, J.L.; Klotzbach, P.J.; Balachandran, S.; Camargo, S.J.; Holland, G.; Knutson, T.R.; Kossin, J.P.; Lee, T.; Sobel, A.; et al. Tropical cyclones and climate change. WIREs Clim. Chang. 2016, 7, 65–89. [Google Scholar] [CrossRef]
- Daloz, A.S.; Camargo, S.J.; Kossin, J.P.; Emanuel, K.; Horn, M.; Jonas, J.A.; Zhao, M. Cluster Analysis of Downscaled and Explicitly Simulated North Atlantic Tropical Cyclone Tracks. J. Clim. 2015, 28, 1333–1361. [Google Scholar] [CrossRef] [Green Version]
- Klotzbach, P.J.; Landsea, C.W. Extremely Intense Hurricanes: Revisiting Webster et al. (2005) after 10 Years. J. Clim. 2015, 28, 7621–7629. [Google Scholar] [CrossRef]
- Yoshida, K.; Sugi, M.; Mizuta, R.; Murakami, H.; Ishii, M. Future Changes in Tropical Cyclone Activity in High-Resolution Large-Ensemble Simulations. Geophys. Res. Lett. 2017, 44, 9910–9917. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013; 1535p. [Google Scholar] [CrossRef]
- Colbert, A.J.; Soden, B.J.; Vecchi, G.A.; Kirtman, B.P. The Impact of Anthropogenic Climate Change on North Atlantic Tropical Cyclone Tracks. J. Clim. 2013, 26, 4088–4095. [Google Scholar] [CrossRef]
- Garner, A.J.; Mann, M.E.; Emanuel, K.A.; Kopp, R.E.; Lin, N.; Alley, R.B.; Pollard, D. Impact of climate change on New York City’s coastal flood hazard: Increasing flood heights from the preindustrial to 2300 CE. Proc. Natl. Acad. Sci. USA 2017, 114, 11861–11866. [Google Scholar] [CrossRef] [Green Version]
- Murakami, H.; Wang, B. Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Clim. 2010, 23, 2699–2721. [Google Scholar] [CrossRef]
- Murakami, H.; Vecchi, G.A.; Underwood, S.; Delworth, T.L.; Wittenberg, A.T.; Anderson, W.G.; Chen, J.-H.; Gudgel, R.G.; Harris, L.; Lin, S.-J.; et al. Simulation and prediction of Category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Clim. 2015, 28, 9058–9079. [Google Scholar] [CrossRef]
- Bhatia, K.; Vecchi, G.; Murakami, H.; Underwood, S.; Kossin, J. Projected Response of Tropical Cyclone Intensity and Intensification in a Global Climate Model. J. Clim. 2018, 31, 8281–8303. [Google Scholar] [CrossRef]
- Murakami, H.; Levin, E.; Delworth, T.L.; Gudgel, R.; Hsu, P.-C. Dominant effect of relative tropical Atlantic warming on major hurricane occurrence. Science 2018, 362, 794–799. [Google Scholar] [CrossRef]
- Murakami, H.; Vecchi, G.A.; Villarini, G.; Delworth, T.L.; Gudgel, R.; Underwood, S.; Yang, X.; Zhang, W.; Lin, S. Seasonal forecasts of major hurricanes and landfalling tropical cyclones using a high-resolution GFDL coupled climate model. J. Clim. 2016, 29, 7977–7989. [Google Scholar] [CrossRef]
- Schenkel, B.A.; Lin, N.; Chavas, D.; Vecchi, G.A.; Oppenheimer, M.; Brammer, A. Lifetime Evolution of Outer Tropical Cyclone Size and Structure as Diagnosed from Reanalysis and Climate Model Data. J. Clim. 2018, 31, 7985–8004. [Google Scholar] [CrossRef]
- Zhang, W.; Vecchi, G.A.; Murakami, H.; Delworth, T.; Wittenberg, A.T.; Rosati, A.; Underwood, S.; Anderson, W.; Harris, L.; Gudgel, R.; et al. Improved Simulation of Tropical Cyclone Responses to ENSO in the Western North Pacific in the High-Resolution GFDL HiFLOR Coupled Climate Model. J. Clim. 2016, 29, 1391–1415. [Google Scholar] [CrossRef]
- Landsea, C.W.; Franklin, J.L. Atlantic Hurricane Database Uncertainty and Presentation of a New Database Format. Mon. Weather Rev. 2013, 141, 3576–3592. [Google Scholar] [CrossRef]
- Taramelli, A.; Melelli, L.; Pasqui, M.; Sorichetta, A. Estimating hurricane hazards using a GIS system. Nat. Hazards Earth Syst. Sci. 2008, 8, 839–854. [Google Scholar] [CrossRef] [Green Version]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2018. Available online: http://qgis.osgeo.org (accessed on 4 May 2019).
- Chavas, D.R.; Ling, N.; Dong, W.; Lin, Y. Observed Tropical Cyclone Size Revisited. J. Clim. 2016, 29, 2923–2939. [Google Scholar] [CrossRef]
- National Hurricane Center. Glossary of NHC Terms. Available online: https://www.nhc.noaa.gov/aboutgloss.shtml (accessed on 4 May 2019).
- Bell, K.; Ray, P.S. North Atlantic Hurricanes 1977–99: Surface Hurricane-Force Wind Radii. Mon. Weather Rev. 2004, 132, 1167–1189. [Google Scholar] [CrossRef]
- Delworth, T.L.; Rosati, A.; Anderson, W. Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Clim. 2012, 25, 2755–2781. [Google Scholar] [CrossRef]
- Delworth, T.L.; Broccoli, A.J.; Rosati, A.; Stouffer, R.J.; Balaji, V.; Beesley, J.A.; Cooke, W.F.; Dixon, K.W.; Dunne, J.; Dunne, K.A.; et al. GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Clim. 2006, 19, 643–674. [Google Scholar] [CrossRef]
- Bhatia, K.; Vecchi, G.; Kossin, J.; Knutson, T.; Murakami, H. Is Climate Change Redefining the Speed Limit of Tropical Cyclones? In Proceedings of the 33rd Conference on Hurricanes and Tropical Meteorology, Ponte, Vedra, FL, USA, 16–20 April 2018. [Google Scholar]
- Harris, L.M.; Lin, S.-J.; Tu, C.Y. High resolution climate simulations using GFDL HiRAM with a stretched global grid. J. Clim. 2016, 29, 4293–4314. [Google Scholar] [CrossRef]
- Emanuel, K. Global Warming Effects on U.S. Hurricane Damage. Weather. Soc. 2011, 3, 261–268. [Google Scholar] [CrossRef]
- Bamber, J.L.; Aspinall, W.P. An expert judgement assessment of future sea level rise from the ice sheets. Nat. Clim. Chang. 2013, 3, 424–427. [Google Scholar] [CrossRef]
- Rasmussen, D.J.; Bittermann, K.; Buchanan, M.K.; Kulp, S.; Strauss, B.H.; Kopp, R.E.; Oppenheimer, M. Extreme sea level implications of 1.5 °C, 2.0 °C, and 2.5 °C temperature stabilization targets in the 21st and 22nd centuries. Environ. Res. Lett. 2018, 13, 034040. [Google Scholar] [CrossRef]
- Wahl, T.; Haigh, I.D.; Nicholls, R.J.; Arns, A.; Dangendorf, S.; Hinkel, J.; Slangen, A.B. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis. Nat. Commun. 2017, 8, 16075. [Google Scholar] [CrossRef] [Green Version]
TC Landfall | MH Landfall | |||||
---|---|---|---|---|---|---|
Buffer | (a) Freq | (b) Diff | (c) Correl (p-Value) | (d) Freq | (e) Diff | (f) Correl (p-Value) |
0 km | 2.76 | +1.14 | 0.71 (2.00 × 10−16) | 0.19 | −0.42 | 0.33 (3.12 × 10−4) |
100 km | 3.37 | +1.75 | 0.75 (2.20 × 10−16) | 0.50 | −0.11 | 0.80 (2.20 × 10−16) |
200 km | 3.97 | +2.35 | 0.71 (2.20 × 10−16) | 0.74 | +0.13 | 0.86 (2.20 × 10−16) |
300 km | 4.40 | +2.78 | 0.68 (2.20 × 10−16) | 0.84 | +0.22 | 0.86 (2.20 × 10−16) |
400 km | 4.92 | +3.30 | 0.67 (2.48 × 10−16) | 0.94 | +0.33 | 0.84 (2.20 × 10−16) |
500 km | 5.39 | +3.77 | 0.63 (5.22 × 10−14) | 0.99 | +0.38 | 0.84 (2.20 × 10−16) |
Buffer (km) | (a) MHL and TCL | (b) TC and TCL | (c) TC and MHL | (d) Niño-3.4 and TCL | (e) Niño-3.4 and MHL | (f) MDR and TCL | (g) MDR and M. MHL |
---|---|---|---|---|---|---|---|
0 | 0.21 (0.02) | 0.41 (5.31 × 10−6) | 0.08 (0.38) | −0.29 (1.62 × 10−3) | −0.14 (0.12) | 0.16 (0.09) | 0.07 (0.42) |
100 | 0.41 (5.80 × 10−6) | 0.45 (3.83 × 10−7) | 0.16 (0.08) | −0.27 (3.10 × 10−3) | −0.20 (0.03) | 0.17 (0.08) | 0.09 (0.31) |
200 | 0.47 (1.43 × 10−7) | 0.55 (1.67 × 10−10) | 0.34 (1.60 × 10−4) | −0.33 (2.68 × 10−4) | −0.28 (2.06 × 10−3) | 0.22 (0.02) | 0.13 (0.17) |
300 | 0.46 (1.43 × 10−7) | 0.60 (1.79 × 10−12) | 0.34 (2.29 × 10−4) | −0.38 (2.94 × 10−5) | −0.33 (3.23 × 10−4) | 0.24 (8.60 × 10−3) | 0.14 (0.13) |
400 | 0.53 (1.27 × 10−9) | 0.65 (4.10 × 10−15) | 0.37 (4.88 × 10−5) | −0.40 (1.10 × 10−5) | −0.37 (5.09 × 10−5) | 0.23 (0.01) | 0.19 (0.04) |
500 | 0.53 (8.86 × 10−10) | 0.69 (2.20 × 10−16) | 0.37 (3.43 × 10−5) | −0.42 (2.93 × 10−6) | −0.37 (4.21 × 10−5) | 0.26 (0.01) | 0.20 (0.03) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levin, E.L.; Murakami, H. Impact of Anthropogenic Climate Change on United States Major Hurricane Landfall Frequency. J. Mar. Sci. Eng. 2019, 7, 135. https://doi.org/10.3390/jmse7050135
Levin EL, Murakami H. Impact of Anthropogenic Climate Change on United States Major Hurricane Landfall Frequency. Journal of Marine Science and Engineering. 2019; 7(5):135. https://doi.org/10.3390/jmse7050135
Chicago/Turabian StyleLevin, Emma L., and Hiroyuki Murakami. 2019. "Impact of Anthropogenic Climate Change on United States Major Hurricane Landfall Frequency" Journal of Marine Science and Engineering 7, no. 5: 135. https://doi.org/10.3390/jmse7050135
APA StyleLevin, E. L., & Murakami, H. (2019). Impact of Anthropogenic Climate Change on United States Major Hurricane Landfall Frequency. Journal of Marine Science and Engineering, 7(5), 135. https://doi.org/10.3390/jmse7050135