Monitoring of a Reinforced Concrete Wharf Using Structural Health Monitoring System and Material Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Structure
2.2. Technology and Positioning of the Sensors
- 2 resistivity sensors of the same technology as those used in [11];
- 3 chloride sensors (physicochemical sensors with 3 electrolyte levels);
- 3 sensors for the measurement of Direct Current (DC) electrical potential of reinforcement bars;
- 3 combined humidity and temperature probes;
- 6 Temperature probes Pt 100 and 14 thermocouples;
- 2 optical fibers for simultaneous measurement of strain and temperature with a Brillouin—Rayleigh optical fiber interrogator.
2.3. Acquisition Device
- Voltages from chloride sensors with an accuracy (for the acquisition device only) of 10 nV,
- Thermocouple data: after thermocouple calibration and cold junction compensation, the maximum temperature uncertainty given by the thermocouples over the measuring range [−20 C; 40 C] is 0.9 C (defined as maximum to minimum deviation).
- Voltages from temperature and humidity sensors with a maximum temperature uncertainty over the measuring range [−20 C; 40 C] of 0.25 C. The humidity measurement uncertainty over the same range is 1%.
- Data from platinum resistance thermometers of type Pt 100 whose maximum temperature uncertainty over the measuring range [−20 C; 40 C] is 0.2 C.
2.4. Construction Program
- days, the precast concrete shells are positioned on the pile heads;
- days , the reinforcement bars are placed in the lower part of the precast concrete shell in parallel with the installation of the sensors dedicated to corrosion measurement;
- , the concrete is poured in the lower area (zone of resistivity sensors). Data acquisition is started at time ;
- days, the reinforcement bars are placed in the beams in parallel with the installation of the strain measurement sensors;
- days, the concrete is poured at the junction of the concrete shells to form the beams;
- days, the concrete slab is poured over the concrete shell.
2.5. Materials and Mixture Used on Site
2.6. Material Tests Performed in Laboratory
- Porosity accessible to water;
- Compressive strength, (Maturity method [18]);
- Elastic modulus.
2.6.1. Porosity
2.6.2. Compressive Strength and Elastic Modulus
2.6.3. Autogenous Deformation
3. Post-Treatment of Data for Comparison and Analysis
3.1. Analysis of Strain Measurement Performed with Fiber Bragg Gratings
3.2. Analysis of Resistivity Measurement Performed with a Multi Electrodes Wenner Probe Embedded in Concrete
3.3. Equivalent Age
- 0.20 for cements CEM 42.5 R, CEM 52.5 N, and CEM 52.5 R (Class R);
- 0.25 for cements CEM 32.5 R, CEM 42.5 N (Class N);
- 0.38 for cements CEM 32.5 N (Class S).
4. Results and Discussion
4.1. Assessment of the Operability of the Embedded Sensors
- the filters of the humidity sensors may become clogged, preventing measurement (particularly due to the presence of chlorides);
- before this deadline, since these probes require recalibration every 2 years, the risk is that the sensor signal drifts slowly;
- Thermocouples type K and PT 100 probes are also susceptible to losing their calibration.
4.2. Material Parameters
4.3. In Situ Measurement of Relative Humidity and Temperature
4.4. Strain Measurement
4.5. Measurement of Apparent Resistivity
4.6. Discussion
5. Conclusions
- Fiber optic extensometers (FBG);
- Pt 100 and thermocouple sensors;
- Relative humidity sensors;
- Embedded resistivity sensors.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Sensor References
Sensor | Reference | Supplier |
---|---|---|
Embedded Strain Sensor | FS62 length 100 mm | HBM |
Optical cable | BRUsens DSS 2.8 mm V1 non-metallic | SOLIFOS |
T C and RH% probes | HC2-C05 | ROTRONIC |
PT 100 probe | ROF-PT100 Class A | ROTRONIC |
Embeddable chloride depth electrode | CP80 | C-Probe Systems |
Reference electrode | CP10P Electrode | C-Probe Systems |
Silver/Silver Chloride/Potassium |
Appendix B. Strain Measurement in Laboratory and Beam 1
References
- Boero, J.; Schoefs, F.; Capra, B.; Rouxel, N. Technical management of French harbour structures—Part 1: Description of built assets. Rev. Paralia 2009, 2, 6.1–6.11. [Google Scholar] [CrossRef]
- Boero, J.; Schoefs, F.; Capra, B.; Rouxel, N. Technical management of French harbour structures—Part 2: Current practices, needs—Experience feedback of owners. Rev. Paralia 2009, 2, 7.1–7.12. [Google Scholar] [CrossRef]
- von Wolffersdorff, P. Workshop Sheet Pile Test Karlsruhe; Technical Report; Delft University: Delft, The Netherlands, 1994. [Google Scholar]
- Finno, R.J.; Roboski, J.F. Three-Dimensional Responses of a Tied-Back Excavation through Clay. J. Geotech. Geoenviron. Eng. 2005, 131, 273–282. [Google Scholar] [CrossRef]
- Del Grosso, A.; Lanata, F.; Brunetti, G.; Pieracci, A. Structural health monitoring of harbour piers. In Proceedings of the 3rd International Conference on Structural Health Monitoring of Intelligent Infrastructure, Vancouver, BC, Canada, 13–16 November 2007. [Google Scholar]
- Catbas, F.N.; Aktan, A.E. Condition and Damage Assessment: Issues and Some Promising Indices. J. Struct. Eng. 2002, 128, 1026–1036. [Google Scholar] [CrossRef]
- Delattre, L.; Duca, V.; Sherrer, P.; Rivière, P. Anchoring efforts on Osaka quay wall at LeHavre harbour. In Geotechnical Engineering for Transportation Infrastructure; Balkema, A.A., Ed.; A.A. Balkema: Rotterdam, The Netherlands, 1999; Volume 2, pp. 713–718. [Google Scholar]
- Schoefs, F.; Yáñez-Godoy, H.; Lanata, F. Polynomial Chaos Representation for Identification of Mechanical Characteristics of Instrumented Structures. Comput. Aided Civ. Infrastruct. Eng. 2011, 26, 173–189. [Google Scholar] [CrossRef]
- Schoefs, F.; Le, K.T.; Lanata, F. Surface response meta-models for the assessment of embankment frictional angle stochastic properties from monitoring data: An application to harbour structures. Comput. Geotech. 2013, 53, 122–132. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.B.; Zhang, Q.; Zhang, B.H. Structural health monitoring of a newly built high-piled wharf in a harbor with fiber Bragg grating sensor technology: Design and deployment. Smart Struct. Syst. 2017, 20, 163–173. [Google Scholar] [CrossRef]
- Lecieux, Y.; Schoefs, F.; Bonnet, S.; Lecieux, T.; Lopes, S.P. Quantification and uncertainty analysis of a structural monitoring device: Detection of chloride in concrete using DC electrical resistivity measurement. Nondestruct. Test. Eval. 2015, 30, 216–232. [Google Scholar] [CrossRef]
- Saleem, M.; Shameem, M.; Hussain, S.E.; Maslehuddin, M. Effect of moisture, chloride and sulphate contamination on the electrical resistivity of Portland cement concrete. Construct. Build. Mater. 1996, 10, 209–214. [Google Scholar] [CrossRef]
- Polder, R.B. Test methods for on site measurement of resistivity of concrete—A RILEM TC-154 technical recommendation. Construct. Build. Mater. 2001, 15, 125–131. [Google Scholar] [CrossRef]
- Morris, W.; Vico, A.; Vazquez, M.; de Sanchez, S.R. Corrosion of reinforcing steel evaluated by means of concrete resistivity measurements. Corros. Sci. 2002, 44, 81–99. [Google Scholar] [CrossRef]
- Andrade, C.; d’Andrea, R.; Rebolledo, N. Chloride ion penetration in concrete: The reaction factor in the electrical resistivity model. Cem. Concr. Compos. 2014, 47, 41–46. [Google Scholar] [CrossRef]
- AFNOR. Mesure de l’Humidité de l’air—NF X15-119; Technical Report NF X15-119; AFNOR: Paris, France, 1999. [Google Scholar]
- du Plooy, R.; Palma Lopes, S.; Villain, G.; Dérobert, X. Development of a multi-ring resistivity cell and multi-electrode resistivity probe for investigation of cover concrete condition. NDT E Int. 2013, 54, 27–36. [Google Scholar] [CrossRef]
- LCPC. Guide Technique La Résistance du Béton Dans L’ouvrage; Technical Report; LCPC: Chapel Hill, NC, USA, 2003. [Google Scholar]
- Samouh, H.; Rozière, E.; Wisniewski, V.; Loukili, A. Consequences of longer sealed curing on drying shrinkage, cracking and carbonation of concrete. Cem. Concr. Res. 2017, 95, 117–131. [Google Scholar] [CrossRef]
- Baroghel-Bouny, V. Conception Des Bétons Pour une Durée de Vie Donnée des Ouvrages; Technical Report; Association Française de Génie Civil: Paris, France, 2004. [Google Scholar]
- AFNOR. Essai Pour Béton Durci —Essai de Porosité et de Masse Volumique—NF P18-459; Technical Report NF P18-459; AFNOR: Paris, France, 2010. [Google Scholar]
- Spinner, S.; Tefft, W. A Method for Determining Mechanical Resonance Frequencies and for Calculating Elastic Moduli from These Frequencies; ASTM: West Conshohocken, PA, USA, 1961; pp. 1221–1238. [Google Scholar]
- Jensen, O.M.; Hansen, P.F. Autogenous deformation and RH-change in perspective. Cem. Concr. Res. 2001, 31, 1859–1865. [Google Scholar] [CrossRef]
- Ferdinand, P. Capteurs à Fibres Optiques à Réseaux de Bragg. Available online: https://www.techniques-ingenieur.fr/base-documentaire/mesures-analyses-th1/cnd-methodes-surfaciques-42586210/capteurs-a-fibres-optiques-a-reseaux-de-bragg-r6735/ (accessed on 27 March 2019).
- Wenner, F. A method of measuring earth resistivity. J. Wash. Acad. Sci. 1915, 5, 561–563. [Google Scholar] [CrossRef]
- Barker, R. Depth of investigation of collinear symmetrical four-electrode arrays. Geophysics 1989, 54, 1031–1037. [Google Scholar] [CrossRef]
- Lanata, F.; Schoefs, F. Multi-algorithm approach for identification of structural behavior of complex structures under cyclic environmental loading. Struct. Health Monit. 2011. [Google Scholar] [CrossRef]
- CEN. NF EN 1992-1-2—Octobre 2005—Calcul des Structures en béton—Partie 1-1: Règles Générales et Règles Pour les Batiments; Technical Report; CEN: Bruxelles, Belgium, 2005. (In French) [Google Scholar]
- Freiesleben Hansen, P.; Pedersen, E. Maleinstrument til Kontrol af betons haerdning. Nordisk Betong 1977, 1, 21–25. [Google Scholar]
- D’Aloia, L.; Chanvillard, G. Determining the “apparent” activation energy of concrete: Ea—Numerical simulations of the heat of hydration of cement. Cem. Concr. Res. 2002, 32, 1277–1289. [Google Scholar] [CrossRef]
- Carette, J.; Staquet, S. Monitoring and modelling the early age and hardening behaviour of eco-concrete through continuous non-destructive measurements: Part I. Hydration and apparent activation energy. Cem. Concr. Compos. 2016, 73, 10–18. [Google Scholar] [CrossRef]
- Piccolo, A.; Lecieux, Y.; Delepine-Lesoille, S.; Leduc, D. Non-invasive tunnel convergence measurement based on distributed optical fiber strain sensing. Smart Mater. Struct. 2019, 28, 045008. [Google Scholar] [CrossRef]
- Turcry, P.; Loukili, A.; Barcelo, L.; Casabonne, J.M. Can the maturity concept be used to separate the autogenous shrinkage and thermal deformation of a cement paste at early age? Cem. Concr. Res. 2002, 32, 1443–1450. [Google Scholar] [CrossRef]
- Kamen, A.; Denarié, E.; Sadouki, H.; Brühwiler, E. Evaluation of UHPFRC activation energy using empirical models. Mater. Struct. 2009, 42, 527–537. [Google Scholar] [CrossRef]
- Yikici, T.A.; Chen, H.L.R. Use of maturity method to estimate compressive strength of mass concrete. Const. Build. Mater. 2015, 95, 802–812. [Google Scholar] [CrossRef]
- Neville, A. Properties of Concrete, 5th ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2011. [Google Scholar]
- American Concrete Institute. Cold Weather Concreting—ACI 306R; Technical Report ACI 306R; American Concrete Institute: Detroit, MI, USA, 2002. [Google Scholar]
- American Concrete Institute. Standard Specification for Cold Weather Concreting—ACI 306; Technical Report ACI 306; American Concrete Institute: Detroit, MI, USA, 2002. [Google Scholar]
- Lothenbach, B. Thermodynamic equilibrium calculations in cementitious systems. Mater. Struct. 2010, 43, 1413–1433. [Google Scholar] [CrossRef]
- Collepardi, M. A state-of-the-art review on delayed ettringite attack on concrete. Cem. Concr. Compos. 2003, 25, 401–407. [Google Scholar] [CrossRef]
- Bamforth, P.B. Early-Age Thermal Crack Control in Concrete; CIRIA: London, UK, 2007. [Google Scholar]
- Harmathy, T. Effect of Moisture on the Fire Endurance of Building Elements. Moisture Mater. Relat. Fire Tests 1965. [Google Scholar] [CrossRef]
- Baroghel-Bouny, V. Caractérisation Microstructurale et Hydrique des Pâtes de Ciment et des Bétons Ordinaires et à Très Hautes Performances. Ph.D. Thesis, Ecole Nationale des Ponts et Chaussées, Paris, France, 1994. [Google Scholar]
- Powers, T.C. A discussion of cement hydration in relation to the curing of concrete. Highw. Res. Board Proc. 1948, 27, 178–188. [Google Scholar]
- Samouh, H.; Rozière, E.; Loukili, A. The differential drying shrinkage effect on the concrete surface damage: Experimental and numerical study. Cem. Concr. Res. 2017, 102, 212–224. [Google Scholar] [CrossRef]
- Lura, P. Autogenous Deformation and Internal Curing of Concrete; Delft University Press: Delft, The Netherlands, 2003. [Google Scholar]
- Sellevold, E.; Bj øntegaard, O. Driving forces to cracking in hardening concrete: Thermal and autogenous deformations. In Proceedings of the 2nd International Symposium on Advances in Concrete through Science and Engineering, Quebec City, QC, Canada, 11–13 September 2006. [Google Scholar]
- Darquennes, A.; Staquet, S.; Delplancke-Ogletree, M.P.; Espion, B. Effect of autogenous deformation on the cracking risk of slag cement concretes. Cem. Concr. Compos. 2011, 33, 368–379. [Google Scholar] [CrossRef]
- Darquennes, A.; Rozière, E.; Khokhar, M.I.A.; Turcry, P.; Loukili, A.; Grondin, F. Long-term deformations and cracking risk of concrete with high content of mineral additions. Mater. Struct. 2012, 45, 1705–1716. [Google Scholar] [CrossRef]
- Whittington, H.W.; McCarter, J.; Forde, M.C. The conduction of electricity through concrete. Mag. Concr. Res. 1981, 33, 48–60. [Google Scholar] [CrossRef]
- Brameshuber, W.; Dauberschmidt, C.; Schröder, P.; Raupach, M. Non-Destructive Determination of the Water Content in the Concrete Cover Using the Multi-Ring-Electrode; Technical Report RWTH-CONV-006116; DGZfP: Potsdam, Germany, 2003. [Google Scholar]
- Burlion, N.; Bourgeois, F.; Shao, J.F. Effects of desiccation on mechanical behaviour of concrete. Cem. Concr. Compos. 2005, 27, 367–379. [Google Scholar] [CrossRef]
- McCarter, W.J.; Chrisp, T.M.; Starrs, G.; Basheer, P.A.M.; Blewett, J. Field monitoring of electrical conductivity of cover-zone concrete. Cem. Concr. Compos. 2005, 27, 809–817. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhang, Y.; Jiang, Q. Continuous tracking of the relationship between resistivity and pore structure of cement pastes. Const. Build. Mater. 2014, 53, 26–31. [Google Scholar] [CrossRef]
- Andrade, C.; Castellote, M.; d’Andrea, R. Chloride aging factor of concrete measured by means of resistivity. In Proceedings of the Proceedings of the XII-International Conference on Durability of Building Materials and Components, Porto, Portugal, 12–15 April 2011. [Google Scholar]
1. | https://www.cost-tu1402.eu (November 2014–April 2019). |
Component | Content (kg/m3) |
---|---|
Gravel 11/22 | 740 |
Gravel 2/10 | 300 |
Sand 0/4 | 810 |
Cement CEM I 52.5 N SR3 (C) | 360 |
Plasticizer | 3.8 |
Water effective | 161 |
Age | Equivalent Age | Strength | Strength | |
---|---|---|---|---|
Temperature | (Equation (8)) | Compression Testing | Computation (Equation (6) | |
10 C | 1 | 1 | 19.7 | 22.3 |
2 | 1.7 | 25.6 | 29.1 | |
7 | 5.21 | 37.4 | 42.1 | |
28 | 19.95 | 53.2 | 53.6 | |
20 C | 1 | 1 | 19.7 | 22.3 |
2 | 2 | 31.1 | 31.1 | |
7 | 7 | 42.8 | 45.1 | |
28 | 28 | 55.8 | 55.8 | |
45 C | 1 | 1 | 19.7 | 22.3 |
2 | 3.2 | 35.1 | 36.8 | |
7 | 14.19 | 49.2 | 51.2 | |
28 | 60.36 | 56.2 | 59.7 |
Type of Sensor | Number of Embedded Sensors | Number of Sensors in Operation |
---|---|---|
FBG for strain measurement | 15 | 13 (2 broken wires) |
Resistivity | 4 | 2 with measurements fully available |
1 with measurements partially available (water in connections) | ||
1 inoperable | ||
RH% | 6 | 5 (broken wire) |
Pt 100 | 6 | 6 |
Reference electrode Ag+ | 6 | 6 |
Chlorides | 6 | 6 |
Optical fiber for strain and temperature measurement (crack detection) | 2 | 1 fully operable |
1 partially operable | ||
Thermocouples | 14 | 14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lecieux, Y.; Rozière, E.; Gaillard, V.; Lupi, C.; Leduc, D.; Priou, J.; Guyard, R.; Chevreuil, M.; Schoefs, F. Monitoring of a Reinforced Concrete Wharf Using Structural Health Monitoring System and Material Testing. J. Mar. Sci. Eng. 2019, 7, 84. https://doi.org/10.3390/jmse7040084
Lecieux Y, Rozière E, Gaillard V, Lupi C, Leduc D, Priou J, Guyard R, Chevreuil M, Schoefs F. Monitoring of a Reinforced Concrete Wharf Using Structural Health Monitoring System and Material Testing. Journal of Marine Science and Engineering. 2019; 7(4):84. https://doi.org/10.3390/jmse7040084
Chicago/Turabian StyleLecieux, Yann, Emmanuel Rozière, Virginie Gaillard, Cyril Lupi, Dominique Leduc, Johann Priou, Romain Guyard, Mathilde Chevreuil, and Franck Schoefs. 2019. "Monitoring of a Reinforced Concrete Wharf Using Structural Health Monitoring System and Material Testing" Journal of Marine Science and Engineering 7, no. 4: 84. https://doi.org/10.3390/jmse7040084
APA StyleLecieux, Y., Rozière, E., Gaillard, V., Lupi, C., Leduc, D., Priou, J., Guyard, R., Chevreuil, M., & Schoefs, F. (2019). Monitoring of a Reinforced Concrete Wharf Using Structural Health Monitoring System and Material Testing. Journal of Marine Science and Engineering, 7(4), 84. https://doi.org/10.3390/jmse7040084