Circulation in the Gulf of Khambhat—A Lagrangian Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrodynamic Model
2.2. Lagrangian Circulation
2.3. Residual Circulation
2.4. Model Calibration for Hydrodynamics
3. Results
3.1. General Circulation
3.2. Lagrangian Circulation
3.3. Residual Circulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability Statement
References
- Giardino, A.; Elias, E.; Arunakumar, A.; Karunakar, K. Tidal modelling in the Gulf of Khambhat based on a numerical and analytical approach. Indian J. Geo-Mar. Sci. 2014, 43, 1253–1259. [Google Scholar]
- Nayak, R.K.; Shetye, S.R. Tides in the Gulf of Khambhat, West Coast of India. Estuar. Coast. Shelf Sci. 2003, 57, 249–254. [Google Scholar] [CrossRef]
- Joseph, A.; Vijaykumar, K.; Prakash, M.; Unnikrishnan, A.S.; Sundar, D.; Prabhudeasi, R.G. Observed tides at Mumbai High offshore region near the continental shelf break in the eastern Arabian Sea. Curr. Sci. 2009, 96, 1233–1235. [Google Scholar]
- Anonymous. Indian Tide Table; Indian and Selected Foreign Ports; Survey of India, Government of India: Dehradun, India, 2017.
- Sanil Kumar, V.; Ashok, K. Waves and Currents in Tide-dominated location off Dahej, Gulf of Khambhat, India. Mar. Geod. 2010, 33, 218–231. [Google Scholar] [CrossRef]
- Anonymous. Comprehensive Marine EIA for Proposed Lignite Based 500 MW Power Plant at Ghogha by Bhavnagar Energy Company Limited 2013; NIO/SP-46/2013; Bhavnagar Energy Company Limited: Gujarat, India, 2013. [Google Scholar]
- Morgan-King, T.L.; Schoellhamer, D.H. Suspended sediment flux and retention in a backwater tidal slough complex near the landward boundary of an estuary. Estuaries Coasts 2013, 36, 300–318. [Google Scholar] [CrossRef]
- Gujarat Ecology Commission (GEC). Ecological Profile of Gujarat Talukas around Gulf of Khambhat 2011; Ecology Commission, Government of Gujarat: Gujarat, India, 2011.
- Srivastava, P.S.; John, V.C. Current regime in the Gulf of Kutch. Indian J. Mar. Sci. 1977, 6, 39–48. [Google Scholar]
- Unnikrishnan, A.S.; Shetye, S.R.; Michael, G.S. Tidal propagation in the Gulf of Khambhat, Bombay High and surrounding areas. Proc. Indian Acad. Sci. Earth Planet. Sci. 1999, 108, 155–177. [Google Scholar]
- Nayak, R.K.; Salim, M.; Mitra, D.; Sridhar, P.N.; Mohanty, P.C.; Dadhwal, V.K. Tidal and Residual Circulation in the Gulf of Khambhat and its Surrounding on the West Coast of India. J Indian Soc. Remote Sens. 2015, 43, 151–162. [Google Scholar] [CrossRef]
- Marinone, S.G. A numerical simulation of the two and three-dimensional Lagrangian circulation in the northern Gulf of California. Estuar. Coast. Shelf Sci. 2006, 68, 93–100. [Google Scholar] [CrossRef]
- Sheng, J.; Wang, L. Numerical study of tidal circulation and nonlinear dynamics in Lunenburg Bay, Nova Scotia. J. Geophys. Res. 2004, 109, C10018. [Google Scholar] [CrossRef]
- Allahdadi, M.N.; Jose, F.; Eurico, J.D.; Dong, S.K. Effect of wind, river discharge, and outer-shelf phenomena on circulation dynamics of the Atchafalaya Bay and shelf. Ocean Eng. 2017, 129, 567–580. [Google Scholar] [CrossRef]
- Lou, J.; Ridd, P.V. Modeling of suspended sediment transport in coastal areas under waves and currents. Estuar. Coast. Shelf Sci. 1997, 45, 1–16. [Google Scholar]
- Tattersall, G.R.; Elliott, A.J.; Lynn, N.M. Suspended sediment concentration in the Tamar estuary. Estuar. Coast. Shelf Sci. 2003, 57, 679–688. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.S. On the transport of mass by time-varying ocean currents. Deep-Sea Res. 1969, 16, 431–447. [Google Scholar] [CrossRef]
- Muller, H.; Blanke, B.; Dumas, F.; Fand, L.; Mariette, V. Estimating the Lagrangian residual circulation in the Iroise Sea. J. Mar. Syst. 2009, 78, S17–S36. [Google Scholar] [CrossRef] [Green Version]
- Van Sebille, E.; Griffies, S.M.; Abernathey, R.; Adams, T.P.; Berloff, P.; Biastoch, A.; Deleersnijder, E. Lagrangian ocean analysis: Fundamentals and practices. Ocean Model. 2018, 121, 49–75. [Google Scholar] [CrossRef]
- Stoker, J.J. Water Waves; Interscience Publishers: New York, NY, USA, 1957. [Google Scholar]
- Naidu, V.S.; Sarma, R.V. Numerical modeling of tide-induced currents in Thane creek, west coast of India. J. Waterw. Port Coast. Ocean Eng. 2001, 127, 241–244. [Google Scholar] [CrossRef]
- Naidu, V.S.; Thomas, J.; Bari, S.; Kachave, S. The impact of dredging on residence time in the Amba estuary, west coast of India. Environ. Earth Sci. 2016, 75, 108. [Google Scholar]
- Leendertse, J.J. A Water-Quality Simulation Model for Well-Mixed Estuaries and Coastal Seas: Volume I; Principles of Computation; The Rand Corporation: Santa Monica, CA, USA, 1970. [Google Scholar]
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modelling for barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef] [Green Version]
- Sathish, K.S.; Balaji, R. Effect of bottom friction on tidal hydrodynamics along Gulf of Khambhat, India. Estuar. Coast. Shelf Sci. 2015, 154, 129–136. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Zhu, Y. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Gong, W.P.; Shen, J.; Jia, J.J. The impact of human activities on the flushing properties of a semi-enclosed lagoon: Xiaohai, Hainan, China. Mar. Environ. Res. 2008, 65, 62–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batten, W.M.J.; Bahaj, A.S.; Molland, A.F.; Chaplin, J.R. The prediction of hydrodynamic, performance of marine current turbines. Renew. Energy 2008, 33, 1085–1096. [Google Scholar] [CrossRef]
- Shetye, S.R. Dynamics of circulation of the waters around India. In Ocean Science: Trends and Future Directions; Somayajulu, B.L.K.Y., Ed.; Indian National Science Academy: New Delhi, India, 1999; pp. 1–21. [Google Scholar]
- Balasubramanya, T.N. A New Dynamic Feature of Wind-driven Ocean Circulations. Clim. Model. 2015, 86–87. [Google Scholar]
- Gille, S.T.; Metzger, E.J.; Tokmakian, R. Seafloor Topography and Ocean Circulation. Spec. Issue Bathymetr. Space 2004, 17, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Chu, P.C.; Liu, Q.Y.; Jia, Y.L.; Fan, C.W. Evidence of a Barrier Layer in the Sulu and Celebes Seas. J. Phys. Oceanogr. 2002, 32, 3299–3309. [Google Scholar] [CrossRef] [Green Version]
- Kara, B.A.; Peter, A.R.; Harley, E.H. Mixed layer depth variability and barrier layer formation over the North Pacific Ocean. J. Geophys. Res. 2000, 105, 783–801. [Google Scholar] [CrossRef] [Green Version]
- Sinha, P.C.; Jena, G.K.; Jain, I.; Rao, A.D.; Lokman, H.M. Numerical Modelling of Tidal Circulation and Sediment Transport in the Gulf of Khambhat and Narmada Estuary, West Coast of India. Pertanika J. Sci. Technol. 2010, 18, 293–302. [Google Scholar]
- Salim, M.; Nayak, R.K.; Mohanthy, P.C.; Sasamal, S.K.; Dadhwal, V.K.; Dutt, C.B.S.; Rao, M.S. Characterization of the Seasonal Circulation Patterns and Its Application on Oil Spill Transportin the Northwestern Continental Shelf of India. Mar. Geod. 2015, 38, 241–260. [Google Scholar] [CrossRef]
- Gutierrez, O.Q.; Marinone, S.G.; Pares-Sierra, A. Lagrangian surface circulation in the Gulf of California from a 3D numerical model. Deep-Sea Res. Ii 2004, 51, 659–672. [Google Scholar] [CrossRef] [Green Version]
- Marinone, S.G.; Lavin, M.F.; Pares-Sierra, A. A quantitative characterization of the seasonal Lagrangian circulation of the Gulf of California from a three-dimensional numerical model. Cont. Shelf Res. 2011, 31, 1420–1426. [Google Scholar] [CrossRef]
- Shetye, S.R.; Gouveia, A.D.; Shenoi, S.S.C.; Sundar, D.; Michael, G.S.; Almeida, A.M.; Santanam, K. Hydrography and circulation off the west coast of India during the Southwest Monsoon 1987. J. Mar. Res. 1990, 48, 359–378. [Google Scholar] [CrossRef]
Tide | ||||
Location | Coordinate | Duration | Bias (m) | RMSE (m) |
Dahej | 21°39′9.1″ N 72°33′17.4″ E | 22 October 2015–01 November 2015 | 0.05 | 0.11 |
Surat | 21°04′4.7″ N 72°37′41.3″ E | 22 December 2011–01 January 2012 | 0.04 | 0.19 |
Bhavnagar | 21°27′25.0″ N 72°15′32.2″ E | 13 February 2011–15 March 2011 | 0.035 | 0.012 |
Current | ||||
Location | Coordinate | Duration | Bias (m/s) | RMSE (m/s) |
Dahej | 21°39′9.1″ N 72°33′17.4″ E | 22 October 2015–01 November 2015 | 0.04 | 0.58 |
Surat | 21°04′2.4″ N 72°37′39.7″ E | 12 February 2013–22 February 2013 | 0.09 | 0.44 |
Bhavnagar | 21°27′2.6″ N 72°15′47.2″ E | 29 September 2011–6 October 2011 | 0.03 | 0.04 |
Location | Current Speed > 0.5 m/s | Current Speed > 1 m/s | ||||
---|---|---|---|---|---|---|
Southwest Monsoon | Northeast Monsoon | Pre-Monsoon | Southwest Monsoon | Northeast Monsoon | Pre-Monsoon | |
Eastern GoK | 76.0 | 66.0 | 51.0 | 14.1 | 12.8 | 5.4 |
Northern GoK | 22.0 | 13.5 | 11.2 | 0.4 | - | - |
Western GoK | 77.0 | 67.0 | 58.6 | 40.5 | 20.1 | 18.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitra, A.; Kumar, V.S.; Naidu, V.S. Circulation in the Gulf of Khambhat—A Lagrangian Perspective. J. Mar. Sci. Eng. 2020, 8, 25. https://doi.org/10.3390/jmse8010025
Mitra A, Kumar VS, Naidu VS. Circulation in the Gulf of Khambhat—A Lagrangian Perspective. Journal of Marine Science and Engineering. 2020; 8(1):25. https://doi.org/10.3390/jmse8010025
Chicago/Turabian StyleMitra, Aditi, V. Sanil Kumar, and V. Simhadri Naidu. 2020. "Circulation in the Gulf of Khambhat—A Lagrangian Perspective" Journal of Marine Science and Engineering 8, no. 1: 25. https://doi.org/10.3390/jmse8010025
APA StyleMitra, A., Kumar, V. S., & Naidu, V. S. (2020). Circulation in the Gulf of Khambhat—A Lagrangian Perspective. Journal of Marine Science and Engineering, 8(1), 25. https://doi.org/10.3390/jmse8010025