Shoreline Extraction Based on an Active Connection Matrix (ACM) Image Enhancement Strategy
Abstract
:1. Introduction
- Characteristics visible by an operator on an aerial or remote sensing image;
- Intersection between a tidal datum and a digital terrain model or a coastal profile;
- Characteristics of multispectral images identified by automatic algorithms not necessarily visible to an unaided operator.
2. Study Area and Data Set
3. Methodology
3.1. Shoreline Extraction with WorldView-2 Image
3.2. Shoreline Extraction with Sentinel-1 Image
- Thermal noise removal;
- Apply Orbit filer;
- Calibration to Beta0;
- Coregistration;
- Multitemporal de-speckle;
- Range doppler terrain correction.
- Use decibel bands or not;
- Use polarization VV or VH;
- Choose the filter for the multitemporal de-speckle.
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
VHR | very high resolution |
HR | high resolution |
SAR | synthetic aperture radar |
GNSS | Global Navigation Satellite System |
UAV | unmanned aerial vehicle |
WI | water index |
VI | vegetation index |
ACM | active connections matrix |
UTM | universal transverse mercator |
WGS84 | World Geodetic System 1984 |
EPSG | European Petroleum Survey Group |
EC | European Commission |
ESA | European Space Agency |
SLC | single look complex |
GRD | ground range detected |
IW | Interferometric Wide |
TOPSAR | Terrain Observation with Progressive Scans SAR |
MLLW | mean Lower low water |
RPC | rational polynomial coefficient |
GCP | ground control point |
CP | check point |
HCS | hyperspherical color space |
WVWI | WorldView water index |
CB | coastal band |
NIR | near infrared |
SNAP | sentinel application platform |
DN | digital number |
NDVI | normalized difference vegetation index |
NDWI | normalized difference Water Index |
VDS | video-derived shoreline |
SDS | satellite-derived shoreline |
RMSD | root mean square difference |
COSMO-SkyMed | COnstellation of small Satellites for the Mediterranean basin Observation |
Appendix A
J-Net Dynamic
References and Note
- Łabuz, T.A. Environmental impacts-coastal erosion and coastline changes. In Second Assessment of Climate Change for the Baltic Sea Basin; Springer: Cham, Switzerland, 2015; pp. 381–396. [Google Scholar]
- Carapuço, M.M.; Taborda, R.; Silveira, T.M.; Psuty, N.P.; Andrade, C.; Freitas, M.C. Coastal geoindicators: Towards the establishment of a common framework for sandy coastal environments. Earth-Sci. Rev. 2016, 154, 183–190. [Google Scholar] [CrossRef]
- Dolan, R.; Hayden, B.P.; May, P.; May, S. The reliability of shoreline change measurements from aerial photographs. Shore Beach 1980, 48, 22–29. [Google Scholar]
- Sorensen, R.M. Basic Coastal Engineering; Springer Science & Business Media: New York, NY, USA, 2005; Volume 10. [Google Scholar]
- Gens, R. Remote sensing of coastlines: Detection, extraction and monitoring. Int. J. Remote Sens. 2010, 31, 1819–1836. [Google Scholar] [CrossRef]
- Toure, S.; Diop, O.; Kpalma, K.; Maiga, A.S. Shoreline Detection using Optical Remote Sensing: A Review. ISPRS Int. J. Geo-Inf. 2019, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Boak, E.H.; Turner, I.L. Shoreline definition and detection: A review. J. Coastal Res. 2005, 688–703. [Google Scholar] [CrossRef] [Green Version]
- Pugliano, G.; Robustelli, U.; Luccio, D.D.; Mucerino, L.; Benassai, G.; Montella, R. Statistical Deviations in Shoreline Detection Obtained with Direct and Remote Observations. J. Mar. Sci. Eng. 2019, 7, 137. [Google Scholar] [CrossRef] [Green Version]
- Palazzo, F.; Latini, D.; Baiocchi, V.; Del Frate, F.; Giannone, F.; Dominici, D.; Remondiere, S. An application of COSMO-Sky Med to coastal erosion studies. Eur. J. Remote Sens. 2012, 45, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Dominici, D.; Zollini, S.; Alicandro, M.; Della Torre, F.; Buscema, P.M.; Baiocchi, V. High Resolution Satellite Images for Instantaneous Shoreline Extraction Using New Enhancement Algorithms. Geosciences 2019, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Maglione, P.; Parente, C.; Vallario, A. High resolution satellite images to reconstruct recent evolution of domitian coastline. Am. J. Appl. Sci. 2015, 12, 506. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Jezek, K.C. Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods. Int. J. Remote Sens. 2004, 25, 937–958. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, X.; Hu, S.; Su, F. Extraction of coastline in aquaculture coast from multispectral remote sensing images: Object-based region growing integrating edge detection. Remote Sens. 2013, 5, 4470–4487. [Google Scholar] [CrossRef] [Green Version]
- Sheng, G.; Yang, W.; Deng, X.; He, C.; Cao, Y.; Sun, H. Coastline detection in synthetic aperture radar (SAR) images by integrating watershed transformation and controllable gradient vector flow (GVF) snake model. IEEE J. Ocean. Eng. 2012, 37, 375–383. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, L. Ocean SAR Image Segmentation and Edge Gradient Feature Extraction. J. Coast. Res. 2019, 94 (Suppl. S1), 141–144. [Google Scholar] [CrossRef]
- Maglione, P.; Parente, C.; Vallario, A. Coastline extraction using high resolution WorldView-2 satellite imagery. Eur. J. Remote Sens. 2014, 47, 685–699. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Buscema, P.M. Sistemi ACM e Imaging Diagnostico: Le Immagini Mediche Come Matrici Attive di Connessioni; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- Buscema, M.; Catzola, L.; Grossi, E. Images as active connection matrixes: The J-net system. Int. J. Intell. Comput. Med. Sci. Image Process. 2008, 2, 27–53. [Google Scholar] [CrossRef]
- Le spiagge dell’Abruzzo. Studi costieri. 2006; Volume 10. Available online: http://www.gnrac.it/rivista/Numero10.htm (accessed on 2 December 2019).
- Progetto Preliminare Della Costa Teatina—Fenomeni Erosivi Della Fascia Costiera. Available online: http://www.provincia.chieti.it/flex/cm/pages/ServeAttachment.php/L/IT/D/2%252F4%252F4%252FD.d367c153fd7837fd72ca/P/BLOB%3AID%3D3926/E/pdf (accessed on 28 October 2019).
- MATTM-Regioni. Linee Guida per la Difesa della Costa dai fenomeni di Erosione e dagli effetti dei Cambiamenti climatici. Versione 2018. Available online: http://www.erosionecostiera.isprambiente.it/linee-guida-nazionali (accessed on 29 October 2019).
- European Space Imaging. Available online: https://www.euspaceimaging.com/about/satellites/worldview-2/ (accessed on 19 September 2019).
- Satellite Imaging Corporation. Available online: https://www.satimagingcorp.com/satellite-sensors/worldview-2/ (accessed on 19 September 2019).
- Geoimage. Available online: https://www.geoimage.com.au/satellite/worldview-2 (accessed on 19 September 2019).
- Geomatics. Available online: https://www.https://geomatics.planet.com/upload/digitalglobe/DigitalGlobe%20Core%20Imagery%20Products%20Guide.pdf (accessed on 19 September 2019).
- ESA Sentinel Home, Missions, Sentinel-1. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-1/overview (accessed on 22 May 2019).
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 22 May 2019).
- ESA Sentinel Home, User Guides, Sentinel-1 SAR, Product Types and Processing Levels, Level-1. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/product-types-processing-levels/level-1 (accessed on 22 May 2019).
- ESA Sentinel Home, User Guides, Sentinel-1 SAR, Acquisition Modes, Interferometric Wide Swath. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/interferometric-wide-swath (accessed on 24 May 2019).
- TIDES4FISHING. Available online: https://tides4fishing.com/ (accessed on 29 March 2019).
- Whitfield, A.; Elliott, M. 1.07-Ecosystem and biotic classifications of estuaries and coasts. In Treatise on Estuarine and Coastal Science; Elsevier: Amsterdam, The Netherlands, 2011; pp. 99–124. [Google Scholar]
- Planetek, ERDAS IMAGINE, Software, PRODUCER Suite of Power Portfolio by Hexagon Geospatial.
- Padwick, C.; Deskevich, M.; Pacifici, F.; Smallwood, S. WorldView-2 Pansharpening. In Proceedings of the ASPRS 2010 Annual Conference, San Diego, CA, USA, 26–30 April 2010. [Google Scholar]
- Wolf, A.F. Using WorldView-2 Vis-NIR multispectral imagery to support land mapping and feature extraction using normalized difference index ratios. In International Society for Optics and Photonics Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII; International Society for Optics and Photonics: San Diego, CA, USA, 2012; Volume 8390. [Google Scholar]
- Palomar-Vázquez, J.; Almonacid-Caballer, J.; Pardo-Pascual, J.E.; Sanchez-García, E. SHOREX: A new tool for automatic and massive extraction of shorelines from Landsat and Sentinel 2 imagery. In Proceedings of the 7th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab), Santander, Spain, 22–26 May 2018. [Google Scholar]
- Bodansky, E.; Gribov, A.; Pilouk, M. Smoothing and compression of lines obtained by raster-to-vector conversion. In International Workshop on Graphics Recognition; Springer: Berlin/Heidelberg, Germany, 2001; pp. 256–265. [Google Scholar]
- Alesheikh, A.A.; Ghorbanali, A.; Nouri, N. Coastline change detection using remote sensing. Int. J. Environ. Sci. Technol. 2007, 4, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Braga, F.; Tosi, L.; Prati, C.; Alberotanza, L. Shoreline detection: Capability of COSMO-SkyMed and high-resolution multispectral images. Eur. J. Remote Sens. 2013, 46, 837–853. [Google Scholar] [CrossRef]
- ESA, Earth Online, Home, Missions, ESA EO Missions, ERS, Instruments, SAR, Applications. Available online: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/ers/instruments/sar/applications/radar-courses/content-3/-/asset_publisher/mQ9R7ZVkKg5P/content/radar-course-3-image-interpretation-tone (accessed on 3 September 2019).
- Marghany, M.; Sabu, Z.; Hashim, M. Mapping coastal geomorphology changes using synthetic aperture radar data. Int. J. Phys. Sci. 2010, 5, 1890–1896. [Google Scholar]
- Pradhan, B.; Rizeei, H.; Abdulle, A. Quantitative assessment for detection and monitoring of coastline dynamics with temporal RADARSAT images. Remote Sens. 2018, 10, 1705. [Google Scholar] [CrossRef] [Green Version]
- Taha, L.G.E.D.; Elbeih, S.F. Investigation of fusion of SAR and Landsat data for shoreline super resolution mapping: The northeastern Mediterranean Sea coast in Egypt. Appl. Geom. 2010, 2, 177–186. [Google Scholar] [CrossRef] [Green Version]
- GRASS Manual. Available online: https://grass.osgeo.org/grass76/manuals/addons/i.edge.html (accessed on 5 July 2019).
- Guastaferro, F.; Maglione, P.; Parente, C.; Santamaria, R. Estrazione in automatico della linea di costa da immagini satellitari IKONOS. In Proceedings of the Conference “Geomatica. Le Radici del Futuro. Tributo a Sergio Degual & Riccardo Galetto”, Pavia, Italy, 10–11 February 2011; pp. 109–116, ISBN 88-901939-6-4. [Google Scholar]
- Esmail, M.; Mahmod, W.E.; Fath, H. Assessment and prediction of shoreline change using multi-temporal satellite images and statistics: Case study of Damietta coast, Egypt. Appl. Ocean Res. 2019, 82, 274–282. [Google Scholar] [CrossRef]
- Spinosa, A.; Ziemba, A.; Saponieri, A.; Navarro-Sanchez, V.D.; Damiani, L.; El Serafy, G. Automatic Extraction of Shoreline from Satellite Images: A new approach. In Proceedings of the 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Bari, Italy, 8–10 October 2018; pp. 33–38. [Google Scholar]
- Demir, N.; Oy, S.; Erdem, F.; Şeker, D.Z.; Bayram, B. Integrated shoreline extraction approach with use of Rasat MS and SENTINEL-1A SAR Images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 445. [Google Scholar] [CrossRef] [Green Version]
- Buscema, M.; Grossi, E. J-Net System: A New Paradigm for Artificial Neural Networks Applied to Diagnostic Imaging. In Applications of Mathematics in Models, Artificial Neural Networks and Arts; Publishing House: Dordrecht, The Netherlands, 2010; pp. 431–455. [Google Scholar]
Sentinel-1 Images | |
---|---|
Number | Date dd/mm/yyyy |
1 | 12/01/2017 |
2 | 06/01/2017 |
3 | 31/12/2016 |
4 | 25/12/2016 |
5 | 19/12/2016 |
6 | 13/12/2016 |
7 | 07/12/2016 |
Image Type | Optical Image | SAR Image | ||||
---|---|---|---|---|---|---|
Reference shoreline extracted from | Pansharpened WV-2 image | Sentinel-1 image | Sentinel-2 image | |||
Algorithm | NDVI | J-Net Dynamic | Canny | J-Net Dynamic | Canny | J-Net Dynamic |
I (m) | 1.67 | 1.20 | 12.52 | 5.86 | 66.49 | 60.77 |
% increase | 28.14 | 58.19 | 8.60 |
VHR OPTICAL | HR SAR | |||||
---|---|---|---|---|---|---|
WV2 - WVWI | WV2 - J Net | S2 - Canny | S2 - J Net | S1 - Canny | S1 - JNet | |
Mean (m) | 1.87 | 1.45 | 70.11 | 66.09 | 17.21 | 10.61 |
Standard deviation (m) | 1.13 | 1.12 | 29.20 | 19.57 | 9.10 | 8.21 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zollini, S.; Alicandro, M.; Cuevas-González, M.; Baiocchi, V.; Dominici, D.; Buscema, P.M. Shoreline Extraction Based on an Active Connection Matrix (ACM) Image Enhancement Strategy. J. Mar. Sci. Eng. 2020, 8, 9. https://doi.org/10.3390/jmse8010009
Zollini S, Alicandro M, Cuevas-González M, Baiocchi V, Dominici D, Buscema PM. Shoreline Extraction Based on an Active Connection Matrix (ACM) Image Enhancement Strategy. Journal of Marine Science and Engineering. 2020; 8(1):9. https://doi.org/10.3390/jmse8010009
Chicago/Turabian StyleZollini, Sara, Maria Alicandro, María Cuevas-González, Valerio Baiocchi, Donatella Dominici, and Paolo Massimo Buscema. 2020. "Shoreline Extraction Based on an Active Connection Matrix (ACM) Image Enhancement Strategy" Journal of Marine Science and Engineering 8, no. 1: 9. https://doi.org/10.3390/jmse8010009
APA StyleZollini, S., Alicandro, M., Cuevas-González, M., Baiocchi, V., Dominici, D., & Buscema, P. M. (2020). Shoreline Extraction Based on an Active Connection Matrix (ACM) Image Enhancement Strategy. Journal of Marine Science and Engineering, 8(1), 9. https://doi.org/10.3390/jmse8010009