Numerical Modelling of the Effects of the Gulf Stream on the Wave Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wave Model Setup
2.2. Validation
3. Results and Discussions
Comparison of the Spatial Patterns in the Simulations with and without Currents
4. Assessment of the Influence of the Gulf Stream on Waves
4.1. Analysis of Wave Spectra Along the Main Axis of the Gulf Stream
4.1.1. Case #1: Waves and Current Opposed
4.1.2. Case #2. Waves and Current Almost Aligned Propagating to the NE
4.2. Analysis of the Characteristic Parameters Along a Transect Crossing the Gulf Stream
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stommel, H. The westward intensification of wind-Driven ocean currents. Trans. Am. Geophys. Union 1984, 29, 202–206. [Google Scholar] [CrossRef]
- Pedlosky, J. Ocean Circulation Theory, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1996; p. 456. [Google Scholar] [CrossRef]
- Lutjeharms, J.R.E. The Agulhas Current; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 10 3-540-42392-3. Available online: https://link.springer.com/content/pdf/10.1007/3-540-37212-1.pdf (accessed on 30 September 2020).
- Gula, J.; Molemaker, J.; McWilliams, J. Gulf Stream dynamics along the south eastern U.S. seaboard. J. Phys. Oceanogr. 2015, 45, 690–715. [Google Scholar] [CrossRef]
- Marez, C.D.; Lahaye, N.J.; Gula, J. Interaction of the Gulf Stream with small scale topography: A focus on lee waves. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glenn, S.M.; Ebbesmeyer, C. The structure and propagation of a Gulf Stream frontal eddy along the North Carolina shelf break. J. Geophys. Res. 1994, 99, 5029–5046. [Google Scholar] [CrossRef]
- Thomas, G.P. Wave-Current Interactions: An Experimental and Numerical Study. Part 1. Linear Waves. J. Fluid Mech. 1981, 110, 457–474. [Google Scholar] [CrossRef]
- Kemp, P.H.; Simons, R.R. The Interaction between Waves and a Turbulent Current: Waves Propagating with the Current. J. Fluid Mech. 1982, 116, 227–250. [Google Scholar] [CrossRef] [Green Version]
- Kemp, P.H.; Simons, R.R. The Interaction of Waves and a Turbulent Current: Waves Propagating against the Current. J. Fluid Mech. 1983, 130, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Nwogu, O.G. Effect of Steady Currents on Directional Wave Spectra. In Proc.12th Int. Conf. On Offshore Mechanics and Arctic Engineering (OMAE); OMAE: Glasgow, Scotland, 1993; Volume 1, pp. 25–32. [Google Scholar]
- Guedes Soares, C.; Pablo, H.D. Experimental study of the transformation of wave spectra by a uniform current. Ocean Eng. 2006, 33, 293–310. [Google Scholar] [CrossRef]
- Onorato, M.; Proment, D.; Toffoli, A. Triggering rogue waves in opposing currents. Phys. Rev. Lett. 2011, 107, 184502. [Google Scholar] [CrossRef]
- Toffoli, A.; Waseda, T.; Houtani, H.; Cavaleri, L.; Onorato, M. Rogue waves in opposing currents: An experimental study on deterministic and stochastic wave trains. J. Fluid Mech. 2015, 769, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Melville, W.; Romero, L.; Kleiss, J. Extreme wave events in the Gulf of Tehuantepec. In Proceedings of the Rogue Waves: 14th ‘Aha Huliko‘a Hawaiian Winter Workshop 2005, University of Hawai‘i at Manoa, Honolulu, HI, USA, 23–28 January 2005. [Google Scholar]
- Romero, L.; Lenain, L.; Melville, W.K. Observations of surface wave-Current interaction. J. Phys. Oceanogr. 2017, 47, 615–632. [Google Scholar] [CrossRef]
- Rusu, L.; Guedes Soares, C. Modelling the Wave-Current Interactions in an Offshore Basin using the SWAN Model. Ocean Eng. 2011, 38, 63–76. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-Generation wave model for coastal regions. Part 1: Model description and validation. J. Geophys. Res. 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- Rusu, L.; Bernardino, M.; Guedes Soares, C. Modelling the influence of currents on wave propagation at the entrance of the Tagus estuary. Ocean Eng. 2011, 38, 1174–1183. [Google Scholar] [CrossRef]
- Hayes, J.G. Ocean current wave interaction study. J. Geophys. Res. 1980, 85, 5025–5031. [Google Scholar] [CrossRef]
- Mathiesen, M. Wave refraction by a current whirl. J. Geophys. Res. 1987, 92, 3905–3912. [Google Scholar] [CrossRef]
- Holthuijsen, L.H.; Tolman, H.L. Effects of the Gulf Stream on ocean waves. J. Geophys. Res. 1991, 96, 12755–12771. [Google Scholar] [CrossRef]
- Restano, M.; Esa-Esrin, S.C.; Passaro, M.; Vignudelli, S.; Benveniste, J.; Tum, C.; Esrin, E. Wave-Current interactions in the Agulhas Current. In Proceedings of the 12th Coastal Altimetry Workshop (CAW12), ESA-ESRIN, Fraskati (Rome), Italy, 4–7 February 2020; p. 39. [Google Scholar]
- Ponce de León, S.; Guedes Soares, C.; Johannessen, J.A. Modelling of the Stokes Drift in the Agulhas Current System; Guedes Soares, C., Santos, T.A., Eds.; Developments in Maritime Technology and Engineering: London, UK, 2021. [Google Scholar]
- Wang, D.W.; Liu, A.K.; Peng, C.Y.; Meindl, E.A. Wave-Current interaction near the Gulf Stream during the Surface Wave Dynamics Experiment. J. Geophys. Res. 1994, 99, 5065–5079. [Google Scholar] [CrossRef]
- Ardhuin, F.; Gille, S.T.; Menemenlis, D.; Rocha, C.B.; Rascle, N.; Chapron, B.; Gula, J.; Molemaker, J. Small-Scale open-Ocean currents have large effects on wind-Wave heights. J. Geophys. Res. Oceans 2017, 122, 4500–4517. [Google Scholar] [CrossRef] [Green Version]
- WAMDI Group. The WAM Model—A Third Generation Ocean Wave Prediction Model. J. Phys. Oceanogr. 1988, 18, 1775–1810. [Google Scholar] [CrossRef] [Green Version]
- Komen, G.J.; Cavaleri, L.; Donelan, M.A.; Hasselmann, K.; Hasselmann, S.; Janssen, P.A.E.M. Dynamics and Modelling of Ocean Waves; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Gunther, H.; Berenhs, A. The WAM Model, Validation Document, Version 454; GKSS: Hamburg, Germany, 2012; p. 92. [Google Scholar]
- Amante, C.; Eakins, B.W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. In NOAA Technical Memorandum 2009; NESDIS NGDC-24; National Geophysical Data Center, NOAA: Boulder, CO, USA, 2009. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, W.; Berrisford, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. Chapter Meteorol. 2019, 59, 17–24. [Google Scholar] [CrossRef]
- Ponce de León, S.; Guedes Soares, C. Influence of Agulhas Current Retroflection on Extreme and Abnormal Waves. Unpublished work. 2020. [Google Scholar]
- IFS Documentation-Cy46r1. Operational Implementation. Part VII: ECMWF Wave Model. 99 pp. Copyright 2019 European Centre for Medium-Range Weather Forecasts Shinfield Park, Reading, RG2 9AX, England. Available online: https://www.ecmwf.int/sites/default/files/elibrary/2019/Part-VII-ECMWF-Wave-Model.pdf (accessed on 6 June 2019).
- Janssen, P.A.E.M. Quasi-Linear theory of wind wave generation applied to wave forecasting. J. Phys. Oceanogr. 1991, 21, 1631–1642. [Google Scholar] [CrossRef] [Green Version]
- Hasselmann, S.; Hasselmann, K.; Allender, J.H.; Barnett, T.P. Computations and parameterizations of the nonlinear energy transfer in a gravity-Wave spectrum, Part II. J. Phys. Oceanogr. 1985, 15, 1378–1391. [Google Scholar] [CrossRef] [Green Version]
- Komen, G.J.; Hasselmann, S.; Hasselmann, K. On the existence of a fully developed wind-Sea spectrum. J. Phys. Oceanogr. 1984, 14, 1271–1285. [Google Scholar] [CrossRef]
- Lellouche, J.-M.; Greiner, E.; Galloudec, L.O.; Garric, G.; Regnier, C.; Drevillon, M.; Benkiran, M.; Testut, C.-E.; Bourdalle-Badie, R.; Gasparin, F.; et al. Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-Time 1/12°high-resolution system. Ocean. Sci. 2018, 14, 1093–1126. [Google Scholar] [CrossRef] [Green Version]
- Alves, J.-H.; Ardhuin, A.; Babanin, M.; Banner, A.; Benner, M.; Belibassakis, K.A.; Benoit, M.; Groeneweg, J.; Herbers, T.H.C.; Hwang, P.; et al. Wave modelling—The state of the art. Prog. Oceanogr. 2007, 75, 603–674. [Google Scholar]
- Ponce de León, S.; Bettencourt, J.H. Composite analysis of North Atlantic extra-Tropical cyclone waves from satellite altimetry observations. Adv. Space Res. 2019. [Google Scholar] [CrossRef]
- Guedes Soares, C.; Bitner-Gregersen, E.M.; Antao, P. Analysis of the frequency of ship accidents under severe North Atlantic weather conditions. In Proceedings of the Design and Operation for Abnormal Conditions II, RINA, London, UK, 6–7 November 2001; pp. 221–230. [Google Scholar]
Parameters | Coarse Grid | Nested Grid |
---|---|---|
Simulation period | 01/01/2019–28/02/2019 | |
Geographical domain | 58° N, 20° N, 20° W, 85° W | 42° N, 32° N, 65° W, 80° W |
Spatial resolution | 0.125° | 0.05° |
Number of points | (521, 305) 158,905 | (301, 201) 60,501 |
Number of directional bands | 36 | 48 |
Number of frequencies | 38 | 38 |
Frequency range (Hz) | 0.03–1.0201 Hz | |
Type of spectral model | Deep water | |
Propagation | Spherical | |
Sin + Sdis from WAM cycle 4 (ECMWF WAM) | Yes | |
Wind input | [33] | |
Whitecapping dissipation | [35] | |
Nonlinear interactions | [34] | |
Current refraction | Yes | |
Wind input time step (hour) | 1 | |
Wave model output time step (hour) | 1 | |
Integration & source time steps (seconds) | 200 | 90 |
Wind data | Era-5 reanalysis | |
Bathymetry data | Etopo 1 |
Parameter | Location 44137 | Location 41046 | Location 41047 | |||
---|---|---|---|---|---|---|
Coordinates (latitude, longitude) | 42.260° N | 62° W | 23.822° N | 68.822° W | 27.514° N | 71.494° N |
simulation | WWav | WCur | WWav | Wcur | WWav | WCur |
bias | 0.06 | 0.04 | 0.134 | 0.095 | 0.11 | 0.08 |
slope | 0.97 | 0.99 | 0.918 | 0.94 | 0.94 | 0.95 |
S.I. | 0.13 | 0.11 | 0.123 | 0.123 | 0.11 | 0.11 |
RMSE | 0.44 | 0.36 | 0.253 | 0.24 | 0.23 | 0.22 |
cc | 0.96 | 0.98 | 0.90 | 0.91 | 0.94 | 0.95 |
n | 1416 | 1414 | 1414 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponce de León, S.; Guedes Soares, C. Numerical Modelling of the Effects of the Gulf Stream on the Wave Characteristics. J. Mar. Sci. Eng. 2021, 9, 42. https://doi.org/10.3390/jmse9010042
Ponce de León S, Guedes Soares C. Numerical Modelling of the Effects of the Gulf Stream on the Wave Characteristics. Journal of Marine Science and Engineering. 2021; 9(1):42. https://doi.org/10.3390/jmse9010042
Chicago/Turabian StylePonce de León, Sonia, and C. Guedes Soares. 2021. "Numerical Modelling of the Effects of the Gulf Stream on the Wave Characteristics" Journal of Marine Science and Engineering 9, no. 1: 42. https://doi.org/10.3390/jmse9010042
APA StylePonce de León, S., & Guedes Soares, C. (2021). Numerical Modelling of the Effects of the Gulf Stream on the Wave Characteristics. Journal of Marine Science and Engineering, 9(1), 42. https://doi.org/10.3390/jmse9010042