On the Development of a Metamodel and Design Support Excel Automation Program for Offshore Wind Farm Layout Optimization
Abstract
:1. Introduction
2. Offshore Site and Data
2.1. Wind Climate
2.2. Wind Turbine Generator
3. Wind Turbine Layout Automation
3.1. Constraints on Wind Farm Layout
- (1)
- The assumed wind-power-producing area was placed within a 3 × 1 km square shape. This assumption was useful for proving the ground research data’s effectiveness.
- (2)
- We used actual measured wind conditions as wind.
- (3)
- The turbine layout for industrial wind power areas did not consider additional practical constraints such as dynamic load, shape of the site, and cost of the model.
- (4)
- The wind turbines have identical hub heights and performance.
3.2. Defining the Design Variable and Objective Function
Maximize AEP(xi)
Minimize Wake Loss(xi)
Subject to xLower ≤ xi ≤ xUpper i = 1, 2,···, 9
DOE (design of experiment) sampling source code for wind farm layout of Scenario 2 |
class Program { static void writeDataFile(string fileName, DATA[ ] writeData) { StreamWriter objWriter = new StreamWriter(fileName); objWriter.Write(“index, x, y”); //objWriter.WriteLine(“index, x, y”); objWriter.WriteLine(); for (int i = 0; i < writeData.Length; i++) { objWriter.Write(writeData[i].index + “,”); objWriter.Write(writeData[i].x + “,”); objWriter.Write(writeData[i].y + “,”); objWriter.WriteLine(“ “); } objWriter.Close(); } static bool checkValue(DATA[ ] data, double x_val, double y_val, double criteria1) { bool check_value = true; for (int i = 0; i < data.Length; i++) { double delta_x = data[i].x - x_val; double delta_y = data[i].y - y_val; // double radius = Math.Sqrt(delta_x * delta_x + delta_y * delta_y); if (radius < criteria1) { check_value = false; } } // return check_value; } static void Main(string[ ] args) { if (args.Length != 7) { Console.WriteLine(“Argument must be 6 length!!!”); Console.WriteLine(“Current argument is {0}”, (int)args.Length-1); // exit Environment.Exit(-1); |
3.3. Development of the Metamodel for Wind Turbine Layout
148,220 + 17.376 × (x1) − 0.005758 × (x1)2 − 271.69 × (x2)-2.3571 × (x2)2
− 47.64 × (x3) + 0.1139 × (x3)2 + 2.737 × (x4) − 0.000852 × (x4)2 + 2.185 × (x5)
− 0.000320 × (x5)2 + 1.103 × (x6) + 0.000437 × (x6)2 + 3.856 × (x7) − 0.001398
× (x7)2 + 4.832 × (x8) − 0.001909 × (x8)2 + 3.168 × (x9) − 0.000689 × (x9)2
+ 1.4767 × (x2) × (x3)
16.7652 − 0.00446667 × (x1) + 0.0272222 × (x2) − 0.0152778 × (x3)
− 0.00142722 × (x4) − 0.00107619 × (x5) + 0.00155448 × (x6) − 0.00195342
× (x7) − 0.00227908 × (x8) − 0.00195308 × (x9) + 1.77778 × 106 × (x12)
+ 0.00111111 × (x22) + 6.94444 × 105 × (x32) + 3.94539 × 107 × (x42) + 5.63627
× 108 × (x52) − 1.46543 × 106 × (x62) + 7.32715 × 107 × (x72) + 9.01803 × 107
× (x82) + 5.63627 × 107 × (x92)
24.4237 + 0.000355556 × (x1) − 0.0216667 × (x2) − 0.00375 × (x3)
+ 0.000262763 × (x4) + 0.000325325 × (x5) + 0.000237738 × (x6)
+ 0.000262763 × (x7) + 0.0003003 × (x8) + 0.000337838 × (x9)
3.4. Design Support Excel Automation Program
4. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Gil-García, I.C.; García-Cascales, M.S.; Fernández-Guillamón, A.; Molina-García, A. Categorization and analysis of relevant factors for optimal locations in onshore and offshore wind power plants: A taxonomic review. J. Mar. Sci. Eng. 2019, 7, 391. [Google Scholar] [CrossRef] [Green Version]
- Global Wind Energy Council (GWEC). Global Offshore Wind Report 2020; GWEC: Brussels, Belgium, 2020; Volume 19, pp. 10–12, 63–65. [Google Scholar]
- Bui, V.-H.; Hussain, A.; Lee, W.-G.; Kim, H.-M. Multi-objective optimization for determining trade-off between output power and power fluctuations in wind farm system. Energies 2019, 12, 4242. [Google Scholar] [CrossRef] [Green Version]
- Christodoulou, C.A.; Vita, V.; Seritan, G.-C.; Ekonomou, L. A harmony search method for the estimation of the optimum number of wind turbines in a wind farm. Energies 2020, 13, 2777. [Google Scholar] [CrossRef]
- Al-Addous, M.; Jaradat, M.; Wellmann, A.A.J.; Al Hmidan, S. The significance of wind turbines layout optimization on the predicted farm energy yield. Atmosphere 2020, 11, 117. [Google Scholar] [CrossRef] [Green Version]
- Ramos, C.A.; Ramirez, D.; Jin, K.; Li, H. Factorial analysis of selected factors affecting the electricity production of onshore wind farms. Int. J. Energy Clean. Environ. 2011, 12, 67–77. [Google Scholar] [CrossRef]
- Grady, S.A.; Hussaini, M.Y.; Abdullah, M.M. Placement of wind turbines using genetic algorithms. Renew. Energy 2005, 30, 259–270. [Google Scholar] [CrossRef]
- Marmidis, G.; Lazarou, S.; Pyrgioti, E. Optimal placement of wind turbines in a wind park using Monte Carlo simulation. Renew. Energy 2008, 33, 1455–1460. [Google Scholar] [CrossRef]
- Lazarou, S.; Vita, V.; Ekonomou, L. Application of Powell’s optimization method for the optimal number of wind turbines in a wind farm. IET Sci. Meas. Technol. 2011, 5, 77–80. [Google Scholar] [CrossRef]
- Ekonomou, L.; Lazarou, S.; Chatzarakis, G.E.; Vita, V. Estimation of wind turbines optimal number and produced power in a wind farm using an artificial neural network model. Simul. Model. Pract. Theory 2012, 21, 21–25. [Google Scholar] [CrossRef]
- Yang, H.; Xie, K.; Tai, H.M.; Chai, Y. Wind farm layout optimization and its application to power system reliability analysis. IEEE Trans. Power Syst. 2015, 31, 2135–2143. [Google Scholar] [CrossRef]
- Feng, J.; Shen, W.Z. Solving the wind farm layout optimization problem using random search algorithm. Renew. Energy 2015, 78, 182–192. [Google Scholar] [CrossRef]
- Gionfra, N.; Sandou, G.; Siguerdidjane, H.; Faille, D.; Loevenbruck, P. Wind farm distributed PSO-based control for constrained power generation maximization. Renew. Energy 2019, 133, 103–117. [Google Scholar] [CrossRef]
- Hansen, K.S.; Barthelmie, R.J.; Jensen, L.E.; Sommer, A. The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm. Wind Energy 2012, 15, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Andersen, P.S.; Krabbe, U.; Lundsager, P.; Petersen, H. Basismateriale for Beregning af Propelvindmøller; Risø-M-2153 (rev.); Forsøgsanlæg Risø: Roskilde, Denmark, 1980. [Google Scholar]
- Schepers, J.G. ENDOW: Validation and Improvement of ECN’s Wake Model; ECN-C-03-037; Energy Research Centre of the Netherlands ECN: Petten, The Netherlands, 2003. [Google Scholar]
- Risø National Laboratory. Guidelines for Design of Wind Turbines, DNV/Risø, 2nd ed.; Risø National Laboratory: Roskilde, Denmark, 2002. [Google Scholar]
- Available online: http://www.doosanheavy.com/download/pdf/products/energy/DHI_Wind_Power_Brochure_Eng.pdf (accessed on 1 December 2020).
- EMD International A/S. Introduction to wind turbine wake modeling and wake generated turbulence. In WindPRO/PARK; EMD International A/S: Aalborg, Denmark, 2019. [Google Scholar]
- Phadke, M. Quality Engineering Using Robust Design; Prentice Hall: Englewood Cliffs, NJ, USA, 1989. [Google Scholar]
- Florian, A. An efficient sampling scheme: Latin hypercube sampling. Probabilistic Eng. Mech. 1992, 279, 123–130. [Google Scholar] [CrossRef]
- Shin, J.; Baek, S.; Rhee, Y. Wind Farm Layout Optimization Using a Metamodel And Ea/Pso Algorithm In Korea Offshore. Energies 2021, 14, 146. [Google Scholar] [CrossRef]
- Dynardo GmbH. OptiSlang; Version 7.5.1; Documentation; Dynardo GmbH: Weimar, Germany, 2019. [Google Scholar]
- Simpson, T.W.; Peplinski, J.; Koch, P.N.; Allen, J.K. Metamodels for computer-based engineering design: Survey and recommendations. Eng. Comput. 2001, 17, 129–150. [Google Scholar] [CrossRef] [Green Version]
- Roos, D.; Most, T.; Unger, J.F.; Will, J. Advanced surrogate models within the robustness evaluation. In Proceedings of the Weimarer Optimierungs-und Stochastiktage 4.0, Weimar, Germany, 29–30 November 2007. [Google Scholar]
- Dynardo GmbH. optiSLang DLE (Deep Learning Extension); Dynardo GmbH: Weimar, Germany, 2019. [Google Scholar]
Terrain Classification | Roughness Class | Roughness Length | Wake Decay Constant | Ambient Turbulence at 50 m Ax = 1.8 | Ambient Turbulence at 50 m Ax = 2.5 | Additional Detailed Description |
---|---|---|---|---|---|---|
Offshore water areas | 0.0 | 0.0002 | 0.040 | 0.06 | 0.08 | Oceans and large lakes. General water bodies |
Mixed water and land | 0.5 | 0.0024 | 0.052 | 0.07 | 0.10 | Mixed water and land |
Very open farmland | 1.0 | 0.0300 | 0.063 | 0.10 | 0.13 | No cross hedges. Scattered buildings |
Open farmland | 1.5 | 0.0500 | 0.075 | 0.11 | 0.15 | Some buildings. Crossing hedges with an 8 m height with a distance of 1250 m apart |
Item | Value | |
---|---|---|
Operational Data | Rated Power | 5560 kW |
Class | IB | |
Cut-in Wind Speed | 3.5 m/s | |
Rated Wind Speed | 13 m/s | |
Cut-out Wind Speed | 25 m/s | |
Rotor Diameter | 140 m | |
Extreme Survival Wind Speed | 70 m/s | |
Blade | Length | 68 m |
Tower | Hub Height | Site-specific |
Design Variable | Description | Unit | Initial | Level 1 | Level 2 | Level 3 |
---|---|---|---|---|---|---|
x1 | Coastline Distance | m | 1000 | 1000 | 1250 | 1500 |
x2 | Farm Base Angle | Degree | 0 | −10 | 0 | 10 |
x3 | Farm Side Angle | Degree | 90 | 70 | 90 | 110 |
x4 | 1 × 1 Row Distance | m | 1000 | 556 | 778 | 1000 |
x5 | 1 × 2 Row Distance | m | 1000 | 556 | 778 | 1000 |
x6 | 1 × 3 Row Distance | m | 1000 | 556 | 778 | 1000 |
x7 | 1 × 4 Row Distance | m | 1000 | 556 | 778 | 1000 |
x8 | 1 × 5 Row Distance | m | 1000 | 556 | 778 | 1000 |
x9 | 1 × 6 Row Distance | m | 1000 | 556 | 778 | 1000 |
No. | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | AEP (MWh/y) | Wake Loss (%) | CF (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1000 | −10 | 70 | 556 | 556 | 556 | 556 | 556 | 556 | 167,518.2 | 9.3 | 25.8 |
2 | 1000 | −10 | 70 | 556 | 556 | 556 | 778 | 778 | 778 | 168,502.4 | 8.8 | 25.9 |
⋮ | ⋮ | ⋮ | ||||||||||
54 | 1500 | 0 | 70 | 778 | 1000 | 556 | 1000 | 778 | 556 | 169,410.6 | 8.5 | 26.1 |
Metamodel Type | Response | No. Parameters | No. Coefficients | CoD | CoP |
---|---|---|---|---|---|
Polynomial (Box–Cox) | AEP | 9 | 10 | 0.967 | 0.955 |
Wake Loss | 9 | 19 | 0.932 | 0.889 | |
Capacity Factor | 9 | 10 | 0.944 | 0.924 | |
MLS (exponential weight) | AEP | 6 | 7 | 0.864 | 0.839 |
Wake Loss | 4 | 5 | 0.620 | 0.568 | |
Capacity Factor | 6 | 7 | 0.836 | 0.807 | |
Kriging (isotropic kernel) | AEP | 6 | 1 | 0.942 | 0.853 |
Wake Loss | 6 | 1 | 0.726 | 0.852 | |
Capacity Factor | 6 | 1 | 0.915 | 0.817 | |
Feedforward network | AEP | 9 | 9 | 0.996 | 0.979 |
Wake Loss | 9 | 9 | 0.912 | 0.914 | |
Capacity Factor | 9 | 9 | 0.988 | 0.962 |
Metamodel Type | Turbine Number | Response | No. Parameters | No. Coefficients | CoD | CoP |
---|---|---|---|---|---|---|
Kriging (isotropic kernel) | WTG1 | AEP | 6 | 1 | 0.804 | 0.431 |
Polynomial (no mixed term) | Wake Loss | 2 | 5 | 0.657 | 0.587 | |
Polynomial (with mixed terms) | WTG2 | AEP | 2 | 6 | 0.710 | 0.684 |
Polynomial (with mixed terms) | Wake Loss | 2 | 6 | 0.827 | 0.812 | |
Polynomial (no mixed term) | WTG3 | AEP | 3 | 7 | 0.703 | 0.674 |
Polynomial (Box–Cox) | Wake Loss | 3 | 7 | 0.829 | 0.811 | |
Polynomial (no mixed term) | WTG4 | AEP | 6 | 13 | 0.754 | 0.645 |
Polynomial (no mixed term) | Wake Loss | 5 | 11 | 0.757 | 0.660 | |
MLS (exponential weight) | WTG5 | AEP | 2 | 5 | 0.807 | 0.674 |
MLS (exponential weight) | Wake Loss | 2 | 5 | 0.840 | 0.730 | |
Kriging (isotropic kernel) | WTG6 | AEP | 2 | 1 | 0.792 | 0.618 |
Polynomial (Box–Cox) | Wake Loss | 3 | 10 | 0.835 | 0.797 | |
Kriging (isotropic kernel) | WTG7 | AEP | 4 | 1 | 0.851 | 0.685 |
Kriging (isotropic kernel) | Wake Loss | 3 | 1 | 0.881 | 0.724 | |
MLS (exponential weight) | WTG8 | AEP | 2 | 5 | 0.867 | 0.744 |
MLS (exponential weight) | Wake Loss | 2 | 5 | 0.918 | 0.843 | |
MLS (exponential weight) | WTG9 | AEP | 5 | 11 | 0.727 | 0.593 |
Kriging (isotropic kernel) | Wake Loss | 4 | 1 | 0.966 | 0.809 | |
Polynomial (with mixed terms) | WTG10 | AEP | 2 | 6 | 0.728 | 0.682 |
Polynomial (with mixed terms) | Wake Loss | 2 | 6 | 0.729 | 0.682 | |
Kriging (isotropic kernel) | WTG11 | AEP | 3 | 1 | 0.931 | 0.787 |
Kriging (isotropic kernel) | Wake Loss | 3 | 1 | 0.957 | 0.887 | |
Polynomial (with mixed terms) | WTG12 | AEP | 2 | 6 | 0.782 | 0.724 |
Polynomial (with mixed terms) | Wake Loss | 2 | 6 | 0.889 | 0.861 |
Design Variable | Sum of Squares | Degree of Freedom | F-Value | p-Value | Percentage Contribution (%) | |
---|---|---|---|---|---|---|
x1 | Linear | 12,848,521 | 1 | 19.56 | 0 | 20.9 |
Quadratic | 540,417 | 1 | 14.86 | 0 | 0.1 | |
x2 | Linear | 69,342,815 | 1 | 20.82 | 0 | 15.9 |
Quadratic | 666,685 | 1 | 12.75 | 0.001 | 0.2 | |
x3 | Linear | 10,607,289 | 1 | 2.56 | 0.119 | 22.3 |
Quadratic | 24,901 | 1 | 0.48 | 0.495 | 0.1 | |
x4 | Linear | 5,394,393 | 1 | 1.45 | 0.237 | 13.6 |
Quadratic | 12,175 | 1 | 0.32 | 0.573 | 3.6 | |
x5 | Linear | 7,241,302 | 1 | 0.92 | 0.343 | 2.7 |
Quadratic | 40,476 | 1 | 0.05 | 0.832 | 1.2 | |
x6 | Linear | 3,735,458 | 1 | 0.21 | 0.650 | 0.5 |
Quadratic | 109,201 | 1 | 0.09 | 0.772 | 5.7 | |
x7 | Linear | 5,010,360 | 1 | 3.40 | 0.074 | 1.6 |
Quadratic | 56,989 | 1 | 1.09 | 0.304 | 2.2 | |
x8 | Linear | 6,143,541 | 1 | 5.34 | 0.027 | 0.3 |
Quadratic | 106,251 | 1 | 2.03 | 0.163 | 2.4 | |
x9 | Linear | 7,789,495 | 1 | 2.29 | 0.139 | 1.0 |
Quadratic | 13,849 | 1 | 0.26 | 0.610 | 0.3 | |
x2 x3 | Interaction | 261,685 | 1 | 5.00 | 0.032 | 5.3 |
Total | 129,945,804 | 19 | 93.48 | 100 |
Design Variable | Sum of Squares | Degree of Freedom | F-Value | p-Value | Percentage Contribution (%) | |
---|---|---|---|---|---|---|
x1 | Linear | 0.00111 | 1 | 11.69 | 0.002 | 17.2 |
Quadratic | 0.14815 | 1 | 11.99 | 0.001 | 1.1 | |
x2 | Linear | 2.66778 | 1 | 6.72 | 0.014 | 17.6 |
Quadratic | 0.14815 | 1 | 9.99 | 0.003 | 0.2 | |
x3 | Linear | 0.11111 | 1 | 0.93 | 0.342 | 9.9 |
Quadratic | 0.00926 | 1 | 0.62 | 0.435 | 1.6 | |
x4 | Linear | 1.17361 | 1 | 3.46 | 0.071 | 14.7 |
Quadratic | 0.00454 | 1 | 1.62 | 0.212 | 4.5 | |
x5 | Linear | 1.73361 | 1 | 2.47 | 0.125 | 1.4 |
Quadratic | 0.00009 | 1 | 0.72 | 0.402 | 1.5 | |
x6 | Linear | 0.93444 | 1 | 0.12 | 0.726 | 0.9 |
Quadratic | 0.06259 | 1 | 1.12 | 0.297 | 6.2 | |
x7 | Linear | 1.17361 | 1 | 3.08 | 0.088 | 5.1 |
Quadratic | 0.01565 | 1 | 1.05 | 0.312 | 2.4 | |
x8 | Linear | 1.36111 | 1 | 4.19 | 0.049 | 2.4 |
Quadratic | 0.02370 | 1 | 1.60 | 0.215 | 4.5 | |
x9 | Linear | 2.05444 | 1 | 3.07 | 0.089 | 3.6 |
Quadratic | 0.00926 | 1 | 0.62 | 0.435 | 0.9 | |
x2 x3 | Interaction | 0.04481 | 1 | 3.02 | 0.091 | 4.4 |
Total | 11.67704 | 19 | 68.08 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.; Baek, S.; Rhee, Y. On the Development of a Metamodel and Design Support Excel Automation Program for Offshore Wind Farm Layout Optimization. J. Mar. Sci. Eng. 2021, 9, 148. https://doi.org/10.3390/jmse9020148
Shin J, Baek S, Rhee Y. On the Development of a Metamodel and Design Support Excel Automation Program for Offshore Wind Farm Layout Optimization. Journal of Marine Science and Engineering. 2021; 9(2):148. https://doi.org/10.3390/jmse9020148
Chicago/Turabian StyleShin, Joongjin, Seokheum Baek, and Youngwoo Rhee. 2021. "On the Development of a Metamodel and Design Support Excel Automation Program for Offshore Wind Farm Layout Optimization" Journal of Marine Science and Engineering 9, no. 2: 148. https://doi.org/10.3390/jmse9020148
APA StyleShin, J., Baek, S., & Rhee, Y. (2021). On the Development of a Metamodel and Design Support Excel Automation Program for Offshore Wind Farm Layout Optimization. Journal of Marine Science and Engineering, 9(2), 148. https://doi.org/10.3390/jmse9020148