Design and Testing of a Spherical Autonomous Underwater Vehicle for Shipwreck Interior Exploration
Abstract
:1. Introduction
1.1. Shipwreck Interior Exploration
1.2. SIE in Historical Context—Traditional and Modern Approaches to Shipwreck Exploration and Survey
1.2.1. The Traditional Approach: The Remotely Operated Vehicle (ROV) Survey
1.2.2. The Modern Approach: Multi-System Autonomous Vehicle Survey
1.3. Prior Work in Confined-Space Underwater Vehicles
1.3.1. Spherical ROV
1.3.2. Spherical AUV Concepts
1.3.3. Ultra-Compact AUVs
1.3.4. Very Advanced/Commercial AUVs
1.3.5. Similar AUV Designs
2. Materials and Methods
2.1. Architecture Development Overview
2.2. Propulsion System Mechanics
- The vehicle is inherently positively buoyant (when no thrust is being produced).
- Thrust vectors act in-line with the thrust tube axis.
- The four 3-dimensional thrust vectors, , can be reduced via vector addition to two vectors, and acting in two dimensions (the x-z plane), using the axis convention and numbering scheme depicted in Figure 4.
2.2.1. Hover Conditions
2.2.2. Case 2: The Balanced Thrust Increase
2.2.3. Angular Momentum, Yaw Control and Drag
2.3. Architecture
2.3.1. Spherical Hull
2.3.2. Ballast and Payload
2.3.3. Propulsion and Electronic Control
3. Initial Testing
4. Discussion
- A smooth, spherical exterior hull to reduce the hazards of entanglement while providing symmetry in both hardware layout and propulsion mechanics, since approximately equal resistance is experienced in any direction as the vehicle moves through the water, unlike asymmetric or non-spherical shapes likes spheroids, traditional, torpedo-shaped or square-hulled UUVs, or those with external projections such as thrusters or fins. A spherical vehicle can rotate in place with no change in the volume of space encompassing this movement.
- 4-DOF maneuver capability, to enable movement in tight spaces while remaining in a stable, upright orientation.
- Multiple cameras installed around the hull, to enable compartment exploration with minimal maneuvers.
- Fixed, upward-angled tunnel thrusters to direct propeller wash up and away from the majority of settled sediment within the wreck structure, especially sediment near the elevation of the vehicle.
5. Future Work
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Case 1: Unbalanced Thrust Increase
Appendix A.2. Case 3: Co-Located C and G with Balanced Thrust Increase
References
- Eldred, R.A. Autonomous Underwater Vehicle Architecture Synthesis for Shipwreck Interior Exploration. Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA, 2015. [Google Scholar]
- Allotta, B.; Costanzi, R.; Ridolfi, A.; Salvetti, O.; Reggiannini, M.; Kruusmaa, M.; Salumae, T.; Lane, D.M.; Frost, G.; Tsiogkas, N.; et al. The ARROWS Project: Robotic technologies for underwater archaeology. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 364. [Google Scholar]
- Watson, S.; Daniel, A.D.; Keir, G. Localisation of Unmanned Underwater Vehicles (UUVs) in Complex and Confined Environments: A Review. Sensors 2020, 21, 6203. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.T. Détente in deep water: The CIA mission to salvage a sunken Soviet submarine and US-USSR relations, 1968–1975. Intell. Natl. Secur. 2018, 33, 196–210. [Google Scholar] [CrossRef]
- Kurson, R. Shadow Divers.: The True Adventure of Two Americans Who Risked Everything to Solve One of the Last Mysteries of World War II; Random House: New York, NY, USA, 2004. [Google Scholar]
- Grządziel, A. Using Remote Sensing Data to Identify Large Bottom Objects: The Case of World War II Shipwreck of General von Steuben. Geosciences 2020, 10, 240. [Google Scholar] [CrossRef]
- Radio Free Europe/Radio Liberty, Inc. Komsomolets Wreck Site Reveals High Radiation Levels 30 Years After Soviet Sub Sinks. 2021. Available online: https://www.rferl.org/a/komsomolets-wreck-site-reveals-high-radiation-levels-30-years-after-soviet-sub-sinks/30049952.html/ (accessed on 9 February 2021).
- Høibråten, S.; Thoresen, P.E.; Are, H. The sunken nuclear submarine Komsomolets and its effects on the environment. Sci. Total Environ. 1997, 202, 67–78. [Google Scholar] [CrossRef]
- Sellers, W. A Titanic Tale: A Former Alvin Pilot Recalls His 1986 Dives on the Shipwreck. 2010. Available online: https://www.whoi.edu/oceanus/feature/a-titanic-tale (accessed on 12 February 2021).
- Ødegård, Ø.; Sorensen, A.J.; Hansen, R.E.; Ludvigsen, M. A new method for underwater archaeological surveying using sensors and unmanned platforms. IFAC-PapersOnLine 2016, 49, 486–493. [Google Scholar] [CrossRef]
- Ward, C.; Ballard, R.D. Deep-water archaeological survey in the Black Sea: 2000 season. Int. J. Naut. Archaeol. 2004, 33, 2–13. [Google Scholar] [CrossRef]
- Ballard, R.D. Archaeological oceanography. In Remote Sensing in Archaeology; Springer: New York, NY, USA, 2006; pp. 479–497. [Google Scholar]
- Foley, B.P.; Dellaporta, K.; Sakellariou, D.; Bingham, B.S.; Camilli, R.; Eustice, R.M.; Evagelistis, D.; Ferrini, V.L.; Katsaros, K.; Kourkoumelis, D.; et al. The 2005 Chios Ancient Shipwreck Survey: New Methods for Underwater Archaeology. In Hesperia: The Journal of the American School of Classical Studies at Athens; 2009; Volume 78, pp. 269–305, JSTOR; Available online: www.jstor.org/stable/25622694 (accessed on 16 February 2021).
- Allotta, B.; Brandani, L.; Casagli, N.; Costanzi, R.; Mugnai, F.; Monni, N.; Natalini, M.; Ridolfi, A. Development of Nemo remotely operated underwater vehicle for the inspection of the Costa Concordia wreck. In Proceedings of the Institution of Mechanical Engineers, Part M. J. Eng. Marit. Environ. 2017, 231, 3–18. [Google Scholar]
- Rutledge, J.; Yuan, W.; Wu, J.; Freed, S.; Lewis, A.; Wood, Z.; Gambin, T.; Clark, C. Intelligent shipwreck search using autonomous underwater vehicles. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018. [Google Scholar]
- L3Harris. IVER3 Autonomous Underwater Vehicle (AUV) spec sheet. 2019. Available online: https://www.l3harris.com/sites/default/files/2020-07/ims_maritime_datasheet_oceanserver_Iver3-Standard-Spec-Sheet.pdf/ (accessed on 17 February 2021).
- Kapetanović, N.; Kordić, B.; Vasilijević, A.; Nađ, Đ.; Mišković, N. Autonomous Vehicles Mapping Plitvice Lakes National Park, Croatia. Remote Sens. 2020, 12, 3683. [Google Scholar] [CrossRef]
- Kapetanović, N.; Vasilijević, A.; Nađ, Đ.; Zubčić, K.; Mišković, N. Marine Robots Mapping the Present and the Past: Unraveling the Secrets of the Deep. Remote Sens. 2020, 12, 3902. [Google Scholar] [CrossRef]
- Mogstad, A.A.; Ødegård, Ø.; Nornes, S.M.; Ludvigsen, M.; Johnsen, G.; Sørensen, A.J.; Berge, J. Mapping the Historical Shipwreck Figaro in the High Arctic Using Underwater Sensor-Carrying Robots. Remote Sens. 2020, 12, 997. [Google Scholar] [CrossRef] [Green Version]
- Rust, I.C.; Asada, H.H. The Eyeball ROV: Design and Control of a Spherical Underwater Vehicle Steered by an Internal Eccentric Mass. In Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 5855–5862. [Google Scholar]
- Gongwer, C.A. Spherical Underwater Vehicle. U.S. Patent No. 4,455,962, 26 June 1984. [Google Scholar]
- Xiao-juan, L.A.N.; Qing-xuan, J.I.A.; Han-xu, S.U.N. Principle and Dynamic Analysis of a New Type Spherical Underwater Vehicle. J. Beijing Univ. Posts Telecommun. 2010, 33, 20. [Google Scholar]
- Kim, J.; Taesik, K.; Son-Cheol, Y. Conceptual Design of a Spherical Underwater Vehicle Equipped with Vertically Rotatable Thruster Units. In Proceedings of the 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal, 6–9 November 2018. [Google Scholar]
- Watson, S.A.; Peter, N.G. Depth control for micro-autonomous underwater vehicles (μAUVs): Simulation and experimentation. Int. J. Adv. Robot. Syst. 2014, 11, 31. [Google Scholar] [CrossRef]
- Watson, S.A.; Dominic, J.P.C.; Peter, N.G. The design and technical challenges of a micro-autonomous underwater vehicle (μAUV). In Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation, Beijing, China, 7–10 August 2011. [Google Scholar]
- Mazumdar, M.S.T.; Asada, H.H. Dynamic Analysis and Design of Spheroidal Underwater Robots for Precision Multidirectional Maneuvering. In Proceedings of the IEEE/ASME Transactions on Mechatronics. IEEE 2015, 20, 2890–2902. [Google Scholar] [CrossRef]
- Mazumdar, A.; Chuah, M.Y.; Triantafyllou, M.S.; Asada, H.H. Design for precision multi-directional maneuverability: Egg-shaped underwater robots for infrastructure inspection. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014. [Google Scholar]
- Mazumdar, A.; Asada, H.H. Control-configured design of spheroidal, appendage-free, underwater vehicles. IEEE Trans. Robot. 2013, 30, 448–460. [Google Scholar] [CrossRef]
- Mazumdar, A.; Fittery, A.; Ubellacker, W.; Asada, H.H. A ball-shaped underwater robot for direct inspection of nuclear reactors and other water-filled infrastructure. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013. [Google Scholar]
- Fittery, A.; Mazumdar, A.; Lozano, M.; Asada, H.H. Omni-Egg: A smooth, spheroidal, appendage free underwater robot capable of 5 dof motions. In Proceedings of the 2012 Oceans, Hampton Roads, VA, USA, 14–19 October 2012. [Google Scholar]
- Mazumdar, A.; Lozano, M.; Fittery, A.; Asada, H.H. A compact, maneuverable, underwater robot for direct inspection of nuclear power piping systems. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012. [Google Scholar]
- Xing, H.; Guo, S.; Shi, L.; Hou, X.; Liu, Y.; Liu, H.; Hu, Y.; Xia, D.; Li, Z. A Novel Small-scale Turtle-inspired Amphibious Spherical Robot. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019. [Google Scholar]
- Gary, M.O.; Fairfield, N.; Stone, W.C.; Wettergreen, D.; Kantor, G.; Sharp, J.M., Jr. 3D mapping and characterization of Sistema Zacato´n from DEPTHX (DEep Phreatic THermal eXplorer). In Proceedings of the 11th Multidisciplinary Conference on Sinkholes and Engineering and Environmental Impacts of Karst, Tallahassee, FL, USA, 22–26 September 2008; Yuhr, L.B., Alexander, E.C., Jr., Beck, B.F., Eds.; Geotechnical Special Publication no. 183. American Society of Civil Engineers: Reston, VA, USA, 2008; pp. 202–212. [Google Scholar] [CrossRef] [Green Version]
- Richmond, K.; Gulati, S.; Flesher, C.; Hogan, B.P.; Stone, W.C. Navigation, control, and recovery of the ENDURANCE under-ice hovering AUV. In Proceedings of the International Symposium on Unmanned, Untethered Submersible Technology (UUST), Durham, NH, USA, 23–26 August 2009; AUSI: Lee, NH, USA, 2009. [Google Scholar]
- Soylu, S.; Hampton, P.; Crees, T.; Woodroffe, A.; Jackson, E. Sonar-Based SLAM Navigation in Flooded Confined Spaces with the IMOTUS-1 Hovering AUV. Sonar-Based SLAM Navigation in Flooded Confined Spaces with the IMOTUS-1 Hovering AUV. In Proceedings of the 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal, 6–9 November 2018. [Google Scholar]
- Choi, H.-T.; Hanai, A.; Choi, S.K.; Yuh, J. Development of an underwater robot, ODIN-III. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) Cat. No. 03CH37453, Las Vegas, NV, USA, 27–31 October 2003. [Google Scholar]
- Antonelli, G.; Chiaverini, S.; Sarkar, N.; West, M. Adaptive control of an autonomous underwater vehicle: Experimental results on ODIN. IEEE Trans. Control. Syst. Technol. 2001, 9, 756–765. [Google Scholar] [CrossRef]
- Yang, K.C.H.; Junku, Y.; Song, K.C. Fault-tolerant system design of an autonomous underwater vehicle ODIN: An experimental study. Int. J. Syst. Sci. 1999, 30, 1011–1019. [Google Scholar] [CrossRef]
- Choi, S.K.; Takashige, G.Y.; Yuh, J. Experimental study on an underwater robotic vehicle: ODIN. In Proceedings of the IEEE Symposium on Autonomous Underwater Vehicle Technology (AUV’94), Cambridge, MA, USA, 19–20 July 1994; pp. 79–84. [Google Scholar] [CrossRef]
- Gu, S.; Shuxiang, G. Performance evaluation of a novel propulsion system for the spherical underwater robot (SURIII). Appl. Sci. 2017, 7, 1196. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Shuxiang, G.; Yu, W. Design and characteristics evaluation of a novel spherical underwater robot. Robot. Auton. Syst. 2017, 94, 61–74. [Google Scholar] [CrossRef]
- Li, Y.; Shuxiang, G.; Chunfeng, Y. Study on the control system of a novel spherical underwater robot. In Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation (ICMA, Beijing, China, 2–5 August 2015. [Google Scholar]
- Li, Y.; Shuxiang, G.; Chunfeng, Y. Preliminary concept of a novel spherical underwater robot. Int. J. Mechatron. Autom. 2015, 5, 11–21. [Google Scholar] [CrossRef]
- Yue, C.; Guo, S.; Li, M.; Li, Y. Passive and active attitude stabilization method for the spherical underwater robot (SUR-II). In Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12–14 December 2013. [Google Scholar]
- Yue, C.; Guo, S.; Li, M.; Shi, L. Electrical system design of a spherical underwater robot (SUR-II). In Proceedings of the 2013 IEEE International Conference on Information and Automation (ICIA), Yinchuan, China, 2–28 August 2013. [Google Scholar]
- Yue, C.; Shuxiang, G.; Maoxun, L. ANSYS FLUENT-based modeling and hydrodynamic analysis for a spherical underwater robot. In Proceedings of the 2013 IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, 4–7 August 2013. [Google Scholar]
- Yue, C.; Shuxiang, G.; Liwei, S. Hydrodynamic analysis of the spherical underwater robot SUR-II. Int. J. Adv. Robot. Syst. 2013, 10, 247. [Google Scholar] [CrossRef]
- Lin, X.; Shuxiang, G. Development of a spherical underwater robot equipped with multiple vectored water-jet-based thrusters. J. Intell. Robot. Syst. 2012, 67, 307–321. [Google Scholar] [CrossRef]
- Yue, C.; Guo, S.; Lin, X.; Du, J. Analysis and improvement of the water-jet propulsion system of a spherical underwater robot. In Proceedings of the 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China, 5–8 August 2012. [Google Scholar]
- Lin, X.; Guo, S.; Tanaka, K.; Hata, S. Underwater experiments of a water-jet-based spherical underwater robot. In Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation, Beijing, China, 7–10 August 2011. [Google Scholar]
- Guo, S.; Du, J.; Ye, X.; Yan, R.; Gao, H. The computational design of a water jet propulsion spherical underwater vehicle. In Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation, Beijing, China, 7–9 August 2011. [Google Scholar]
- Guo, S.; Lin, X.; Tanaka, K.; Hata, S. Development and control of a vectored water-jet-based spherical underwater vehicle. In Proceedings of the 2010 IEEE International Conference on Information and Automation, Harbin, China, 20–23 June 2010. [Google Scholar]
- Robador, E.M.; Hansen, G.M.; Acha, L.; Pedre, S. Design of an AUV for visual inspection of nuclear power plants. In Proceedings of the 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal, 6–9 November 2018. [Google Scholar]
- Milosevic, Z.; Fernandez, R.A.S.; Dominguez, S.; Rossi, C. Guidance for Autonomous Underwater Vehicles in Confined Semistructured Environments. Sensors 2020, 20, 7237. [Google Scholar] [CrossRef]
- Fernandez, R.A.S.; Milovsevic, Z.; Dominguez, S.; Rossi, C. Motion Control of Underwater Mine Explorer Robot UX-1: Field Trials. IEEE Access 2019, 7, 99782–99803. [Google Scholar] [CrossRef]
- Fernandez, R.A.S.; Milovsevic, Z.; Dominguez, S.; Rossi, C. Modeling and control of underwater mine explorer robot UX-1. IEEE Access 2019, 7, 39432–39447. [Google Scholar] [CrossRef]
- Fernandez, R.A.S.; Milovsevic, Z.; Dominguez, S.; Rossi, C. Nonlinear attitude control of a spherical underwater vehicle. Sensors 2019, 19, 1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, R.A.S.; Milosevic, Z.; Dominguez, S.; Rossi, C. Design, Modeling and Control of a Spherical Autonomous Underwater Vehicle for Mine Exploration. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1513–1519. [Google Scholar] [CrossRef]
- Martins, A.; Almeida, J.; Almeida, C.; Dias, A.; Dias, N.; Aaltonen, J.; Heininen, A.; Koskinen, K.T.; Rossi, C.; Dominguez, S.; et al. UX 1 system design-A robotic system for underwater mining exploration. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018. [Google Scholar]
- Zavari, S.; Heininen, A.; Aaltonen, J.; Koskinen, K.T. Early stage design of a spherical underwater robotic vehicle. In Proceedings of the 2016 20th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 13–15 October 2016. [Google Scholar]
- Raspberry Pi Foundation. Raspberry Pi 4 Tech Specs. 2021. Available online: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/ (accessed on 7 February 2021).
- Blue Robotics. T100 Thruster (Retired) Product Description. 2021. Available online: https://bluerobotics.com/store/retired/t100-thruster/ (accessed on 7 February 2021).
- Herman, P. Numerical Test of Several Controllers for Underactuated Underwater Vehicles. Appl. Sci. 2020, 10, 8292. [Google Scholar] [CrossRef]
- Sands, T. Development of Deterministic Artificial Intelligence for Unmanned Underwater Vehicles (UUV). J. Mar. Sci. Eng. 2020, 8, 578. [Google Scholar] [CrossRef]
- Álvarez-Tuñón, O.; Rodriguez, A.; Jardon, A.; Balaguer, C. Underwater Robot Navigation for Maintenance and Inspection of Flooded Mine Shafts. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018. [Google Scholar]
- Chaudhary, M.; Conrad, M.J. A Survey on the Implementation of Wireless Sensor Network Breadcrumb Trails for Sensing and Localization. In Proceedings of the 2019 SoutheastCon, Huntsville, AL, USA, 11–14 April 2019. [Google Scholar]
- Sumantr, B.; Karsiti, M.N.; Agustiawan, H. Development of variable ballast mechanism for depth positioning of spherical URV. In Proceedings of the 2008 International Symposium on Information Technology, Kuala Lumpur, Malaysia, 26–28 August 2008. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eldred, R.; Lussier, J.; Pollman, A. Design and Testing of a Spherical Autonomous Underwater Vehicle for Shipwreck Interior Exploration. J. Mar. Sci. Eng. 2021, 9, 320. https://doi.org/10.3390/jmse9030320
Eldred R, Lussier J, Pollman A. Design and Testing of a Spherical Autonomous Underwater Vehicle for Shipwreck Interior Exploration. Journal of Marine Science and Engineering. 2021; 9(3):320. https://doi.org/10.3390/jmse9030320
Chicago/Turabian StyleEldred, Ross, Johnathan Lussier, and Anthony Pollman. 2021. "Design and Testing of a Spherical Autonomous Underwater Vehicle for Shipwreck Interior Exploration" Journal of Marine Science and Engineering 9, no. 3: 320. https://doi.org/10.3390/jmse9030320
APA StyleEldred, R., Lussier, J., & Pollman, A. (2021). Design and Testing of a Spherical Autonomous Underwater Vehicle for Shipwreck Interior Exploration. Journal of Marine Science and Engineering, 9(3), 320. https://doi.org/10.3390/jmse9030320