Spatial Analysis of the Fishing Behaviour of Tuna Purse Seiners in the Western and Central Pacific Based on Vessel Trajectory Data
Abstract
:1. Introduction
2. Data Pre-Processing
2.1. Data Source and Data Pre-Processing
2.2. Study Area
3. Methods
3.1. Fishing Behaviour of Tuna Purse Seiners
3.2. Different Trajectory Point Mining Method
3.3. Definition of Fishing Intensity and Fishing Effort
3.4. Spatial Analysis Method
3.4.1. Global Moran Index Parameter Calculation
3.4.2. Calculation of Hot-Spot Analysis Parameters
3.5. Correlation Test
4. Results
4.1. Operation Characteristics of a Single Tuna Purse Seiner
4.2. Speed and Heading Characteristics of Vessels
4.3. Distribution of Fishing Effort of Vessels in Each Month
4.4. Spatial Analysis of Fishing Intensity of Vessels
4.5. Hot Spot Analysis of Vessels Fishing Intensity
4.5.1. Global Spatial Autocorrelation
4.5.2. Hot Spots Distribution of Fishing Intensity
4.6. Correlation Analysis
5. Discussion
5.1. Space Behaviour of a Single Vessel
5.2. Distribution of Fishing Effort by Month
5.3. Spatial Distribution Characteristics of Fishing Effort in Each Month
5.4. Enlightenment of Fishing Effort to Resources
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, Y.L. Status and prospects of tuna fisheries in the Western and Central Pacific. Mod. Fish. Inf. 2002, 9, 18–20. [Google Scholar]
- Lee, J.; South, A.B.; Jennings, S. Developing reliable, repeatable, and accessible methods to provide high-resolution estimates of fishing-effort distributions from vessel monitoring system (VMS) data. Ices J. Mar. Sci. 2010, 67, 1260–1271. [Google Scholar] [CrossRef] [Green Version]
- Martín, P.; Muntadas, A.; de Juan, S.; Sánchez, P.; Demestre, M. Performance of a northwestern Mediterranean bottom trawl fleet: How the integration of landings and VMS data can contribute to the implementation of ecosystem-based fisheries management. Mar. Policy 2014, 43, 112–121. [Google Scholar] [CrossRef]
- Bez, N.; Walker, E.; Gaertner, D.; Rivoirard, J.; Gaspar, P. Fishing activity of tuna purse seiners estimated from vessel monitoring system (VMS) data. J. Fish. Aquat. Sci. 2011, 68, 1998–2010. [Google Scholar] [CrossRef]
- Piet, G.J.; Hintzen, N.T. Indicators of fishing pressure and seafloor integrity. Ices J. Mar. Sci. 2012, 69, 1850–1858. [Google Scholar] [CrossRef]
- Murray, L.G.; Hinz, H.; Hold, N.; Kaiser, M.J. The effectiveness of using CPUE data derived from Vessel Monitoring Systems and fisheries logbooks to estimate scallop biomass. Ices J. Mar. Sci. 2013, 70, 1330–1340. [Google Scholar] [CrossRef] [Green Version]
- Shepperson, J.L.; Hintzen, N.T.; Szostek, C.L.; Bell, E.; Murray, L.G.; Kaiser, M.J. A comparison of VMS and AIS data: The effect of data coverage and vessel position recording frequency on estimates of fishing footprints. Ices J. Mar. Sci. 2018, 75, 988–998. [Google Scholar] [CrossRef]
- McCauley, D.J.; Woods, P.; Sullivan, B.; Bergman, B.; Jablonicky, C.; Roan, A.; Hirshfield, M.; Boerder, K.; Worm, B. Ending hide and seek at sea. Science 2016, 351, 6278. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.L.; Zhang, S.M.; Yuan, Z.H.; Dai, Y.; Zhang, H.; Zhang, B.B.; Fan, W. The fishing intensity calculation of ocean longline fishing grounds based on the fishing behavior characteristics of vessels. J. Fish. Sci. China 2020, 27, 307–314. [Google Scholar]
- Yuan, Z.H.; Yang, D.H.; Fan, W.; Zhang, S.M. Research on the distribution of tuna longline fishing grounds in the Western and Central Pacific based on satellite AIS. Mar. Fish. 2018, 40, 649–659. [Google Scholar]
- Kroodsma, D.A.; Mayorga, J.; Hochberg, T.; Miller, N.A.; Boerder, K.; Ferretti, F.; Wilson, A.; Bergman, B.; White, T.D.; Block, B.A.; et al. Tracking the global footprint of fisheries. Science 2018, 359, 6378. [Google Scholar] [CrossRef] [Green Version]
- Cimino, M.A.; Anderson, M.; Schramek, T.; Merrifield, S.; Terrill, E.J. Towards a Fishing Pressure Prediction System for a Western Pacific EEZ. Sci. Rep. 2019, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.J.; Wang, M.Y. The current status and prospects of the world tuna purse seine fishery. Mar. Fish. 2001, 10, 18–20. [Google Scholar]
- Tang, F.H.; Cui, X.S.; Yang, S.L.; Zhou, W.F.; Cheng, T.F.; Wu, Z.L.; Zhang, H. GIS Spatiotemporal Analysis of the Impact of Marine Environment on the Western and Central Pacific Ocean Tuna Purse Seine Fishing Grounds. South. Fish. Sci. 2014, 10, 18–26. [Google Scholar]
- Li, S.G. Study on the Operating Characteristics and Safety of Purse Seine Vessels; Dalian Maritime University: Dalian, China, 2010. [Google Scholar]
- de Souza, E.N.; Kristina, B.; Stan, M.; Boris, W. Improving Fishing Pattern Detection from Satellite AIS Using Data Mining and Machine Learning. PLoS ONE 2016, 11, e0158248. [Google Scholar]
- Lamigueiro, O.P. solaR: Solar Radiation and Photovoltaic Systems with R. J. Stat. Softw. 2012, 50, 9. [Google Scholar]
- Kalogirou, S. Spatial autocorrelation (Catmog47); Geo Books: Nowich, UK, 1986. [Google Scholar]
- Mitchell, A. The ESRI Guide to GIS Analysis; ESRI Press: California, CA, USA, 2005; Volume 2. [Google Scholar]
- Polacheck, T. Analyses of the relationship between the distribution of searching effort, tuna catches, and dolphin sightings within individual purse seine cruises. Fish. Bull. 1988, 86, 351–366. [Google Scholar]
- Clark, T.P.; Longo, S.B. New Findings from University of Washington Update Understanding of Science (Comment on “Tracking the global footprint of fisheries.”). Sci. Lett. 2018, 60, 225–248. [Google Scholar]
- Kroodsma, D.A. Response to Comment on “Tracking the global footprint of fisheries”. Sci. Lett. 2018, 361, eaat7789. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.M.; Dai, X.J.; Tian, S.Q.; Zhu, G.P. Hot spot analysis and spatial heterogeneity of bonito purse seine fishery resources in the Western and Central Pacific Ocean. Acta Ecol. Sin. 2014, 34, 3771–3778. [Google Scholar]
- Bertrand, S.; Bertrand, A.; Guevara-Carrasco, R.; Gerlotto, F. Scale-invariant movements of fishermen: The same foraging strategy as natural predators. Ecol. Appl. 2007, 17, 2. [Google Scholar] [CrossRef] [PubMed]
Month | Mean | SD | Skewness | Kurtosis | Cv(S/m) | S2/m | Moran’s I | Z Score | p |
---|---|---|---|---|---|---|---|---|---|
2017.07 | 7.009 | 8.356 | 4.029 | 25.496 | 1.192 | 9.958 | 0.434 | 36.963 | 0.000 |
2017.08 | 6.883 | 9.246 | 3.859 | 20.947 | 1.343 | 12.419 | 0.402 | 43.216 | 0.000 |
2017.09 | 5.040 | 6.867 | 5.721 | 50.520 | 1.363 | 9.356 | 0.363 | 41.428 | 0.000 |
2017.10 | 7.273 | 9.220 | 3.263 | 14.209 | 1.268 | 11.689 | 0.518 | 92.925 | 0.000 |
2017.11 | 7.630 | 8.619 | 3.394 | 21.428 | 1.130 | 9.735 | 0.172 | 75.019 | 0.000 |
2017.12 | 7.611 | 10.813 | 4.359 | 29.141 | 1.421 | 15.363 | 0.487 | 112.530 | 0.000 |
2018.01 | 8.012 | 9.798 | 3.422 | 18.650 | 1.223 | 11.981 | 0.362 | 93.178 | 0.000 |
2018.02 | 7.670 | 8.885 | 3.254 | 17.075 | 1.158 | 10.292 | 0.366 | 119.225 | 0.000 |
2018.03 | 8.016 | 11.860 | 4.731 | 33.889 | 1.480 | 17.550 | 0.261 | 143.649 | 0.000 |
2018.04 | 8.022 | 11.849 | 3.648 | 17.043 | 1.477 | 17.500 | 0.480 | 210.123 | 0.000 |
2018.05 | 8.228 | 12.089 | 4.120 | 28.179 | 1.469 | 17.761 | 0.243 | 148.628 | 0.000 |
Month | Mean | SD | Skewness | Kurtosis | Cv(S/m) | S2/m | Moran’s I | Z Score | p |
---|---|---|---|---|---|---|---|---|---|
2017.07 | 15.929 | 81.524 | 9.949 | 107.181 | 5.118 | 414.249 | −0.004 | −0.129 | 0.897 |
2017.08 | 18.454 | 106.115 | 11.304 | 141.121 | 5.750 | 610.198 | −0.002 | 0.204 | 0.839 |
2017.09 | 18.870 | 84.873 | 7.955 | 70.802 | 4.498 | 381.748 | −0.002 | 0.173 | 0.863 |
2017.10 | 13.975 | 85.764 | 12.804 | 190.967 | 6.137 | 526.324 | 0.005 | 1.007 | 0.314 |
2017.11 | 14.395 | 100.715 | 14.570 | 240.525 | 6.996 | 704.646 | 0.002 | 0.625 | 0.532 |
2017.12 | 17.161 | 104.200 | 10.866 | 123.101 | 6.072 | 632.680 | 0.001 | 0.509 | 0.611 |
2018.01 | 15.255 | 97.528 | 14.109 | 242.169 | 6.393 | 623.508 | 0.004 | 1.003 | 0.316 |
2018.02 | 13.347 | 82.986 | 13.697 | 210.533 | 6.218 | 515.988 | 0.007 | 1.150 | 0.250 |
2018.03 | 17.152 | 110.036 | 12.251 | 163.587 | 6.415 | 705.909 | 0.002 | 0.822 | 0.411 |
2018.04 | 16.262 | 98.956 | 13.178 | 196.683 | 6.085 | 602.153 | 0.003 | 1.140 | 0.254 |
2018.05 | 13.488 | 96.474 | 20.922 | 501.533 | 7.152 | 690.028 | 0.000 | 0.367 | 0.714 |
Year | Month | r1 | r2 | r3 |
---|---|---|---|---|
2017 | 7 | 0.850 | 0.845 | 0.465 |
8 | 0.789 | 0.809 | 0.386 | |
9 | 0.773 | 0.812 | 0.334 | |
10 | 0.871 | 0.868 | 0.690 | |
11 | 0.870 | 0.784 | 0.796 | |
12 | 0.843 | 0.886 | 0.378 | |
2018 | 1 | 0.807 | 0.879 | 0.590 |
2 | 0.769 | 0.822 | 0.596 | |
3 | 0.860 | 0.801 | 0.591 | |
4 | 0.887 | 0.863 | 0.617 | |
5 | 0.832 | 0.901 | 0.504 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Yang, S.-L.; Fan, W.; Shi, H.-M.; Yuan, S.-L. Spatial Analysis of the Fishing Behaviour of Tuna Purse Seiners in the Western and Central Pacific Based on Vessel Trajectory Data. J. Mar. Sci. Eng. 2021, 9, 322. https://doi.org/10.3390/jmse9030322
Zhang H, Yang S-L, Fan W, Shi H-M, Yuan S-L. Spatial Analysis of the Fishing Behaviour of Tuna Purse Seiners in the Western and Central Pacific Based on Vessel Trajectory Data. Journal of Marine Science and Engineering. 2021; 9(3):322. https://doi.org/10.3390/jmse9030322
Chicago/Turabian StyleZhang, Han, Sheng-Long Yang, Wei Fan, Hui-Min Shi, and San-Ling Yuan. 2021. "Spatial Analysis of the Fishing Behaviour of Tuna Purse Seiners in the Western and Central Pacific Based on Vessel Trajectory Data" Journal of Marine Science and Engineering 9, no. 3: 322. https://doi.org/10.3390/jmse9030322
APA StyleZhang, H., Yang, S. -L., Fan, W., Shi, H. -M., & Yuan, S. -L. (2021). Spatial Analysis of the Fishing Behaviour of Tuna Purse Seiners in the Western and Central Pacific Based on Vessel Trajectory Data. Journal of Marine Science and Engineering, 9(3), 322. https://doi.org/10.3390/jmse9030322