A Performance Analysis of Feature Extraction Algorithms for Acoustic Image-Based Underwater Navigation
Abstract
:1. Introduction
- We present a detailed analysis on the performance of each algorithm under the challenges initially described and outline the more appropriate characteristics for localization and detected limitations. This analysis was performed in light of several metrics, such as the number of features detected, the total number of associations performed, and the number of incorrect associations observed;
- We propose and implement a feature selection procedure focused on removing features resulting from a multipath effect or secondary echoes.
2. Optical Images and Acoustic Images
3. Feature-Based Image Analysis
3.1. Fundamental Concepts
3.2. Algorithm Selection
3.3. Feature Detection
3.4. Feature Description
3.5. Feature Matching
4. Comparison Methodology
4.1. Datasets
4.2. Acoustic Image Composition
4.3. Image Pre-Processing
4.4. Feature Extraction
4.5. Feature Matching
4.6. Feature Selection
- For each intensity array composing each image, a five-level threshold procedure [22], based on the Otsu’s method, is applied to segment the acoustic data into six different classes, minimizing intra-class variance;
- The intensity array is analyzed again using the highest threshold previously defined. The goal is to identify the first intensity value higher than this threshold, which is expected to be associated to a reflection in the closest obstacle. The corresponding bin position is stored;
- Using the retrieved bin position, plus a margin term, interest points resulting from acoustic information depicted in subsequent bins are removed. These are likely to be false-positive points.
5. Results and Discussion
5.1. Feature Detection Results
5.2. Feature Matching Results
5.3. Computation Time Results
6. Conclusions
Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUV | Autonomous Underwater Vehicle |
BRIEF | Binary Robust Independent Elementary Features |
BRISK | Binary Robust Invariant Scalable Keypoints |
FAST | Features from Accelerated Segment Test |
MSIS | Mechanical Scanning Imaging Sonar |
ORB | Oriented FAST and Rotated BRIEF |
SIFT | Scale-Invariant Feature Transform |
SURF | Speeded Up Robust Features |
References
- Sahoo, A.; Dwivedy, S.K.; Robi, P.S. Advancements in the field of autonomous underwater vehicle. Ocean. Eng. 2019, 181, 145–160. [Google Scholar] [CrossRef]
- Dinuka, H.M.; Bandara, D. Sonar Image Based Advanced Feature Extraction and Feature Mapping Algorithm for Under-Ice AUV Navigation. Ph.D. Thesis, University of Tasmania, Hobart, Australia, 2017. [Google Scholar]
- Tueller, P.; Kastner, R.; Diamant, R. A Comparison of Feature Detectors for Underwater Sonar Imagery. In Proceedings of the OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Song, S.; Yu, S. Navigation Method of AUV to Target Point by Optical and Acoustic Sensor Switching Strategy. In Proceedings of the 2018 15th International Conference on Ubiquitous Robots (UR), Honolulu, HI, USA, 26–30 June 2018; pp. 769–774. [Google Scholar] [CrossRef]
- Tareen, S.A.K.; Saleem, Z. A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK. In Proceedings of the 2018 International Conference on Computing, Mathematics and Engineering Technologies: Invent, Innovate and Integrate for Socioeconomic Development, iCoMET 2018, Sukkur, Pakistan, 3–4 March 2018. [Google Scholar] [CrossRef]
- Hidalgo, F.; Bräunl, T. Evaluation of Several Feature Detectors/Extractors on Underwater Images towards vSLAM. Sensors 2020, 20, 4343. [Google Scholar] [CrossRef] [PubMed]
- Ferrera, M.; Moras, J.; Trouvé-Peloux, P.; Creuze, V. Real-Time Monocular Visual Odometry for Turbid and Dynamic Underwater Environments. Sensors 2019, 19, 687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraundorfer, F.; Scaramuzza, D. Visual odometry: Part II: Matching, robustness, optimization, and applications. IEEE Robot. Autom. Mag. 2012, 19, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Xiangyang, Z.; Jiaruo, H.; Lixiang, M. Image Representation of Acoustic Features for the Automatic Recognition of Underwater Noise Targets. In Proceedings of the 2012 Third Global Congress on Intelligent Systems, Wuhan, China, 6–8 November 2012; pp. 144–147. [Google Scholar] [CrossRef]
- Leutenegger, S.; Chli, M.; Siegwart, R.Y. BRISK: Binary Robust Invariant Scalable Keypoints. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2548–2555. [Google Scholar] [CrossRef] [Green Version]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Low, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Derpanis, K. The Harris Corner Detector; York University: Toronto, ON, Canada, 2004; pp. 2–3. [Google Scholar]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar] [CrossRef]
- Rosten, E.; Porter, R.; Drummond, T. Faster and better: A machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 105–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. BRIEF: Binary Robust Independent Elementary Features. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 6314 LNCS; Springer: Berlin/Heidelberg, Germany, 2010; pp. 778–792. [Google Scholar]
- Porwik, P.; Lisowska, A. The Haar-wavelet transform in digital image processing: Its status and achievements. Mach. Graph. Vis. 2005, 13, 79–98. [Google Scholar]
- Rosin, P.L. Measuring Corner Properties. Comput. Vis. Image Underst. 1999, 73, 291–307. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, C.S.; Ferreira, B.M.; Matos, A.C. Design and development of SHAD—A Small Hovering AUV with Differential actuation. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, OCE 2016, Monterey, CA, USA, 19–23 September 2016; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Tritech International. Micron Sonar Product Hardware Manual, 2nd ed.; Tritech International: Westhill, UK, 2020; Available online: https://www.tritech.co.uk/product/small-rov-mechanical-sector-scanning-sonar-tritech-microns (accessed on 13 May 2020).
- Fula, J.P.; Ferreira, B.M.; Oliveira, A.J. AUV Self-localization in Structured Environments Using a Scanning Sonar and an Extended Kalman Filter. In Proceedings of the OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018. [Google Scholar] [CrossRef]
- Akay, B. A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl. Soft Comput. J. 2013, 13, 3066–3091. [Google Scholar] [CrossRef]
Pre-Processing | Feature Detector | ||||||
---|---|---|---|---|---|---|---|
Image Smoothing | Space-Scale Analysis | Blobs | Corner | ||||
Algorithm | Gaussian Filters | Box Filters | Scale-Space Pyramid | Integral Images and Box Filters | Hessian Matrix | FAST | Harris |
SURF | ✓ | ✓ | ✓ | ||||
SURF-Harris | ✓ | ✓ | |||||
ORB | ✓ | ✓ | ✓ | ||||
BRISK | ✓ | ✓ | ✓ |
Algorithm | Descriptor Nature | Orientation Calculation Procedure |
---|---|---|
SURF | String based | Haar Wavelet response |
SURF-Harris | String based | Haar Wavelet response |
ORB | Binary | Intensity centroid |
BRISK | Binary | Intensity gradient |
Hardware Component | Specifications |
---|---|
CPU | Intel® Core™ i7-8565U Quad-core 1.80 GHz |
GPU | NVIDIA GeForce MX250 |
RAM | 8 GB |
Sonar Configuration Parameter | Assigned Value |
---|---|
Maximum Range | 5.0 m |
Bin Length | 1.25 × 10 m |
Angle Step | 1.8° |
Number of Bins (per intensity array) | 399 bins |
Number of Intensity Arrays (per acoustic image) | 200 arrays |
Scan Acquisition Time (per image) | ∼8 s |
SURF | ORB | BRISK | SURF-Harris | |||||
---|---|---|---|---|---|---|---|---|
Image Pair | Matches | Outliers | Matches | Outliers | Matches | Outliers | Matches | Outliers |
1–2 | 41 | 1 | 38 | 1 | 32 | 0 | 29 | 0 |
2–3 | 43 | 0 | 45 | 0 | 40 | 0 | 35 | 0 |
3–4 | 43 | 0 | 42 | 0 | 44 | 0 | 34 | 1 |
4–5 | 41 | 0 | 43 | 0 | 43 | 0 | 38 | 0 |
5–6 | 47 | 0 | 43 | 0 | 43 | 0 | 37 | 1 |
6–7 | 43 | 0 | 41 | 0 | 44 | 1 | 33 | 0 |
7–8 | 44 | 0 | 42 | 0 | 38 | 0 | 38 | 0 |
SURF | ORB | BRISK | SURF-Harris | |||||
---|---|---|---|---|---|---|---|---|
Image Pair | Matches | Outliers | Matches | Outliers | Matches | Outliers | Matches | Outliers |
1–2 | 29 | 3 | 23 | 1 | 13 | 1 | 20 | 3 |
2–3 | 24 | 2 | 20 | 1 | 16 | 1 | 21 | 3 |
3–4 | 18 | 8 | 9 | 4 | 2 | 1 | 21 | 11 |
4–5 | 16 | 9 | 4 | 2 | 2 | 0 | 23 | 13 |
5–6 | 14 | 5 | 7 | 2 | 2 | 1 | 15 | 8 |
6–7 | 15 | 6 | 2 | 1 | 2 | 2 | 11 | 8 |
7–8 | 11 | 4 | 4 | 0 | 4 | 1 | 15 | 9 |
8–9 | 17 | 7 | 2 | 1 | 4 | 1 | 14 | 13 |
9–10 | 17 | 5 | 5 | 1 | 3 | 2 | 14 | 9 |
10–11 | 16 | 5 | 8 | 2 | 7 | 1 | 15 | 14 |
SURF | ORB | BRISK | SURF-Harris | |||||
---|---|---|---|---|---|---|---|---|
Image Pair | Matches | Outliers | Matches | Outliers | Matches | Outliers | Matches | Outliers |
1–2 | 38 | 1 | 41 | 1 | 31 | 1 | 30 | 0 |
2–3 | 41 | 1 | 44 | 0 | 38 | 0 | 33 | 1 |
3–4 | 40 | 0 | 44 | 0 | 43 | 0 | 36 | 1 |
4–5 | 41 | 2 | 41 | 1 | 39 | 0 | 36 | 0 |
5–6 | 39 | 1 | 40 | 0 | 38 | 0 | 36 | 1 |
6–7 | 41 | 1 | 44 | 0 | 43 | 0 | 32 | 2 |
7–8 | 43 | 1 | 39 | 0 | 39 | 0 | 35 | 0 |
SURF | ORB | BRISK | SURF-Harris | |||||
---|---|---|---|---|---|---|---|---|
Image Pair | Matches | Outliers | Matches | Outliers | Matches | Outliers | Matches | Outliers |
1–2 | 24 | 2 | 25 | 2 | 13 | 0 | 22 | 6 |
2–3 | 18 | 2 | 23 | 0 | 18 | 0 | 26 | 7 |
3–4 | 20 | 5 | 11 | 1 | 5 | 2 | 16 | 6 |
4–5 | 14 | 10 | 6 | 1 | 4 | 1 | 17 | 10 |
5–6 | 15 | 9 | 5 | 1 | 4 | 1 | 16 | 9 |
6–7 | 12 | 2 | 6 | 1 | 4 | 0 | 16 | 11 |
7–8 | 12 | 3 | 6 | 1 | 1 | 0 | 14 | 8 |
8–9 | 19 | 8 | 1 | 1 | 4 | 1 | 15 | 10 |
9–10 | 14 | 2 | 8 | 1 | 2 | 0 | 17 | 9 |
10–11 | 14 | 3 | 9 | 3 | 5 | 0 | 14 | 11 |
SURF | ORB | BRISK | SURF-Harris | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Image Pair | Detection Time (s) | Matching Time (s) | Total Time (s) | Detection Time (s) | Matching Time (s) | Total Time (s) | Detection Time (s) | Matching Time (s) | Total Time (s) | Detection Time (s) | Matching Time (s) | Total Time (s) |
1–2 | 0.141 | 0.005 | 0.146 | 0.020 | 0.004 | 0.024 | 0.571 | 0.004 | 0.574 | 0.033 | 0.004 | 0.037 |
2–3 | 0.143 | 0.003 | 0.146 | 0.019 | 0.004 | 0.022 | 0.581 | 0.003 | 0.584 | 0.045 | 0.054 | 0.100 |
3–4 | 0.156 | 0.004 | 0.160 | 0.032 | 0.006 | 0.037 | 0.590 | 0.002 | 0.592 | 0.082 | 0.007 | 0.090 |
4–5 | 0.167 | 0.003 | 0.1707 | 0.034 | 0.003 | 0.037 | 0.687 | 0.002 | 0.689 | 0.103 | 0.006 | 0.110 |
5–6 | 0.172 | 0.004 | 0.176 | 0.020 | 0.006 | 0.025 | 0.801 | 0.002 | 0.803 | 0.132 | 0.044 | 0.176 |
6–7 | 0.163 | 0.003 | 0.166 | 0.017 | 0.003 | 0.021 | 0.847 | 0.003 | 0.849 | 0.113 | 0.057 | 0.170 |
7–8 | 0.155 | 0.004 | 0.158 | 0.021 | 0.003 | 0.024 | 0.812 | 0.002 | 0.815 | 0.058 | 0.056 | 0.114 |
Average Total Time | 0.160 | 0.027 | 0.701 | 0.114 | ||||||||
Standard Deviation | 0.011 | 0.007 | 0.120 | 0.048 |
SURF | ORB | BRISK | SURF-Harris | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Image Pair | Detection Time (s) | Matching Time (s) | Total Time (s) | Detection Time (s) | Matching Time (s) | Total Time (s) | Detection Time (s) | Matching Time (s) | Total Time (s) | Detection Time (s) | Matching Time (s) | Total Time (s) |
1–2 | 0.141 | 0.003 | 0.144 | 0.015 | 0.003 | 0.019 | 0.543 | 0.019 | 0.562 | 0.094 | 0.054 | 0.148 |
2–3 | 0.143 | 0.003 | 0.146 | 0.012 | 0.004 | 0.016 | 0.555 | 0.003 | 0.557 | 0.120 | 0.005 | 0.126 |
3–4 | 0.149 | 0.003 | 0.152 | 0.012 | 0.003 | 0.015 | 0.576 | 0.003 | 0.579 | 0.073 | 0.052 | 0.125 |
4–5 | 0.156 | 0.003 | 0.158 | 0.017 | 0.004 | 0.020 | 0.584 | 0.029 | 0.613 | 0.078 | 0.052 | 0.130 |
5–6 | 0.160 | 0.005 | 0.165 | 0.020 | 0.003 | 0.022 | 0.582 | 0.011 | 0.594 | 0.079 | 0.006 | 0.085 |
6–7 | 0.147 | 0.003 | 0.150 | 0.020 | 0.002 | 0.022 | 0.574 | 0.002 | 0.576 | 0.068 | 0.005 | 0.073 |
7–8 | 0.153 | 0.003 | 0.156 | 0.018 | 0.002 | 0.020 | 0.561 | 0.003 | 0.564 | 0.068 | 0.004 | 0.072 |
8–9 | 0.167 | 0.004 | 0.170 | 0.015 | 0.003 | 0.018 | 0.566 | 0.003 | 0.569 | 0.051 | 0.004 | 0.054 |
9–10 | 0.197 | 0.004 | 0.201 | 0.018 | 0.003 | 0.021 | 0.576 | 0.003 | 0.579 | 0.060 | 0.004 | 0.063 |
10–11 | 0.209 | 0.003 | 0.212 | 0.019 | 0.004 | 0.023 | 0.639 | 0.002 | 0.641 | 0.073 | 0.008 | 0.080 |
Average Total Time | 0.165 | 0.020 | 0.583 | 0.096 | ||||||||
Standard Deviation | 0.023 | 0.003 | 0.026 | 0.033 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, A.J.; Ferreira, B.M.; Cruz, N.A. A Performance Analysis of Feature Extraction Algorithms for Acoustic Image-Based Underwater Navigation. J. Mar. Sci. Eng. 2021, 9, 361. https://doi.org/10.3390/jmse9040361
Oliveira AJ, Ferreira BM, Cruz NA. A Performance Analysis of Feature Extraction Algorithms for Acoustic Image-Based Underwater Navigation. Journal of Marine Science and Engineering. 2021; 9(4):361. https://doi.org/10.3390/jmse9040361
Chicago/Turabian StyleOliveira, António José, Bruno Miguel Ferreira, and Nuno Alexandre Cruz. 2021. "A Performance Analysis of Feature Extraction Algorithms for Acoustic Image-Based Underwater Navigation" Journal of Marine Science and Engineering 9, no. 4: 361. https://doi.org/10.3390/jmse9040361
APA StyleOliveira, A. J., Ferreira, B. M., & Cruz, N. A. (2021). A Performance Analysis of Feature Extraction Algorithms for Acoustic Image-Based Underwater Navigation. Journal of Marine Science and Engineering, 9(4), 361. https://doi.org/10.3390/jmse9040361