Effect of Maritime Traffic on Water Quality Parameters in Santa Marta, Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Areas of Study
2.2. Physicochemical and Microbiological Variables of Superficial Water
2.3. Estimation of Maritime Traffic
2.4. Data Analysis
3. Results
3.1. Physicochemical and Microbiological Variables in Superficial Water
3.2. Estimation of Maritime Traffic
3.3. Maritime Traffic and the Quality of Water Variables in SM, BC, and Neg Sampling Stations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNCTAD (UN Conference on Trade and Development). Review of Maritime Transport 2016; UNCTAD: Geneva, Switzerland, 2016. [Google Scholar]
- Halpern, B.S.; Frazier, M.; Potapenko, J.; Casey, K.S.; Koenig, K.; Longo, C.; Stewart-Lowndes, J.; Cotton-Rockwood, R.; Selig, E.R.; Selkoe, K.A.; et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 2015, 6, 7615. [Google Scholar] [CrossRef] [Green Version]
- Bracker, E. Impacts of Shipping on Environment and Climate. In International Climate Protection; Palocz-Andresen, M., Szalay, D., Gosztom, A., Sípos, L., Taligás, T., Eds.; Springer: Cham, Switzerland, 2019; pp. 183–189. [Google Scholar] [CrossRef]
- Bajt, O. Aliphatic and Polycyclic Aromatic Hydrocarbons in Gulf of Trieste Sediments (Northern Adriatic): Potential Impacts of Maritime Traffic. Bull. Environ. Contam. Toxicol. 2014, 93, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Liubartseva, S.; De Dominicis, M.; Oddo, P.; Coppini, G.; Pinardi, N.; Greggio, N. Oil spill hazard from dispersal of oil along shipping lanes in the Southern Adriatic and Northern Ionian Seas. Mar. Pollut. Bull. 2015, 90, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Gregoris, E.; Barbaro, E.; Morabito, E.; Toscano, G.; Donateo, A.; Cesari, D.; Contini, D.; Gambaro, A. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air. Environ. Sci. Pollut. Res. 2016, 23, 6951–6959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caric, H.; Klobu, G.; Stambuk, A. Ecotoxicological risk assessment of antifouling emissions in a cruise ship port. J. Clean. Prod. 2014, 121, 159–168. [Google Scholar] [CrossRef]
- Mikhailenko, A.V.; Ruban, D.A.; Ermolaev, V.A.; van Loon, A.J. Cadmium Pollution in the Tourism Environment: A Literature Review. Geosciences 2020, 10, 242. [Google Scholar] [CrossRef]
- Abreu, F.E.L.; Lima, J.N.; Castro, Í.B.; Fillmann, G. Are antifouling residues a matter of concern in the largest South American port? J. Hazard. Mater. 2020, 398, 122937. [Google Scholar] [CrossRef] [PubMed]
- Lucialli, P.; Ugolini, P.; Pollini, E. Harbour of Ravenna: The contribution of harbour traffic to air quality. Atmos. Environ. 2007, 41, 6421–6431. [Google Scholar] [CrossRef]
- Hassellöv, I.-M.; Turner, D.R.; Lauer, A.; Corbett, J.J. Shipping contributes to ocean acidification. Geophys. Res. Lett. 2013, 40, 2731–2736. [Google Scholar] [CrossRef] [Green Version]
- Lenzen, M.; Sun, Y.-Y.; Faturay, F.; Ting, Y.-P.; Geschke, A.; Malik, A. The carbon footprint of global tourism. Nat. Clim. Chang. 2018, 8, 522–528. [Google Scholar] [CrossRef]
- Donateo, A.; Gregoris, E.; Gambaro, A.; Merico, E.; Giua, R.; Nocioni, A.; Contini, D. Contribution of harbour activities and ship traffic to PM 2.5, particle number concentrations and PAHs in a port city of the Mediterranean Sea (Italy). Environ. Sci. Pollut. Res. 2014, 21, 9415–9429. [Google Scholar] [CrossRef] [PubMed]
- Merk, O. Shipping Emissions in Ports. In Proceedings of the International Transport Forum, Paris, France, 10–11 April 2014. [Google Scholar] [CrossRef]
- Gibbs, D.; Rigot-Muller, P.; Mangan, J.; Lalwani, C. The role of sea ports in end-to-end maritime transport chain emissions. Energy Policy 2014, 64, 337–348. [Google Scholar] [CrossRef] [Green Version]
- De Serio, F.; Mossa, M. Environmental monitoring in the Mar Grande basin (Ionian Sea, Southern Italy). Environ. Sci. Pollut. Res. 2015, 23, 12662–12674. [Google Scholar] [CrossRef] [PubMed]
- Luna, G.M.; Manini, E.; Turk, V.; Tinta, T.; D’Errico, G.; Baldrighi, E.; Baljak, V.; Buda, D.; Cabrini, M.; Campanelli, A.; et al. Status of faecal pollution in ports: A basin-wide investigation in the Adriatic Sea. Mar. Pollut. Bull. 2019, 147, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Ten Hallers-Tjabbes, C.C.; Wegener, J.-W.; Van Hattum, B.; Kemp, J.F.; Ten Hallers, E.; Reitsema, T.J.; Boon, J.P. Imposex and organotin concentrations in Buccinum undatum and Neptunea antiqua from the North Sea: Relationship to shipping density and hydrographical conditions. Mar. Environ. Res. 2003, 55, 203–233. [Google Scholar] [CrossRef]
- Miloslavich, P.; Penchaszadeh, P.E.; Bigatti, G. Imposex in gastropods from Venezuela. Cienc. Mar. 2007, 33, 319–324. [Google Scholar] [CrossRef]
- Roos, N. Imposex in Marine Gastropods from the Atlantic Coast of South Africa. Master’s Thesis, North-West University, Potchefstroom, South Africa, 2016; 155p. [Google Scholar]
- Castro, I.B.; Oliveira, C.A.; Lopes, J.C.; Matthews-Cascon, H.; Rocha-Barreira, C. The increasing incidence of imposex in Stramonita haemastoma (Mollusca: Gastropoda: Muricidae) after the establishment of the Pecém Harbor, Ceará State, northeast Brazil. Thalassas 2005, 21, 71–75. [Google Scholar]
- Strand, J.; Jørgensen, A.; Tairova, Z. TBT pollution and effects in molluscs at US Virgin Islands, Caribbean Sea. Environ. Int. 2009, 35, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Elhasni, K.; Vasconcelos, P.; Ghorbel, M.; Othman, J. Inshore/offshore gradients of imposex in Bolinus brandaris (Gastropoda: Muricidae) from the Gulf of Gabès (southern Tunisia, Central Mediterranean Sea). Acta Adriat. 2013, 54, 299–313. [Google Scholar]
- Márquez, F.; Primost, M.A.; Bigatti, G. Shell shape as a biomarker of marine pollution historic increase. Mar. Pollut. Bull. 2016, 114, 816–820. [Google Scholar] [CrossRef] [PubMed]
- Juretic, S.; Cerovic, L.; Galovic, T. Optimal analytical instruments in the function of estimation of total traffic in the port of Rijeka. Sci. J. Marit. Res. 2013, 27, 265–277. [Google Scholar]
- Hajbi, A. Traffic Forecasting in Moroccan Ports. Supply Chain Forum Int. J. 2011, 12, 26–35. [Google Scholar] [CrossRef]
- Miotke-Dzięgiel, J. Ports in development of maritime tourism–problems and challenges. The case of the Pomeranian region. Tour. Hosp. Manag. 2007, 13, 483–492. [Google Scholar]
- Trozzi, C.; Vaccaro, R.; Nicolo, L. Air pollutants emissions estimate from maritime traffic in the italian harbours of Venice and Piombino. Sci. Total Environ. 1995, 169, 257–263. [Google Scholar] [CrossRef]
- Munim, Z.H.; Schramm, H.J. The impacts of port infrastructure and logistics performance on economic growth: The mediating role of seaborne trade. J. Shipp. Trade 2018, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- [Dataset] Dirección General Marítima (DIMAR). Filed No. MD-DIMAR-SUBMERC-ATRANC in Connection with the Delivery of Information from: Ships in the Port of Santa Marta, Santa Marta International Marina and Access to the Tayrona National Natural Park. 2018. Available online: https://www.dimar.mil.co/ (accessed on 7 March 2019).
- Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe (CIOH). Guía Náutica Turística de Colombia; COSMOGUIAS: Cartagena de Indias, Colombia, 2017. [Google Scholar]
- Garay, J.A.; Marín, B.; Ramírez, G.; Betancourt, J.; Troncoso, W.; Gómez, M.L.; Cadavid, B.; Vélez, A.M.; Vivas, D.y.L.J. Diagnóstico y Evaluación de la Calidad Ambiental Marina en el Caribe y Pacífico Colombiano. Red de Vigilancia para la Protección y Conservación de la Calidad de las Aguas Marinas y Costeras; Diagnóstico 2002; INVEMAR: Santa Marta, Colombia, 2003; 263p. [Google Scholar]
- Moscarella, M.V.; García, F.; Palacio, C. Calidad Microbiológica del agua de la Bahía de Santa Marta, Colombia. Rev. Dyna 2011, 167, 132–141. [Google Scholar]
- INVEMAR. Diagnóstico y Evaluación de la Calidad de las Aguas Marinas y Costeras en el Caribe y Pacífico Colombianos. Red de Vigilancia para la Conservación y Protección de las aguas Marinas y Costeras de Colombia–REDCAM: INVEMAR, MinAmbiente, CORALINA, CORPOGUAJIRA, CORPAMAG, CRA, CARDIQUE, CARSUCRE, CVS, CORPOURABÁ, CODECHOCÓ, CVC, CRC y CORPONARIÑO. Informe Técnico 2017; Serie de Publicaciones Periódicas No. 4 del INVEMAR; INVEMAR: Santa Marta, Colombia, 2018; 336p. [Google Scholar]
- INVEMAR. Diagnóstico y Evaluación de la Calidad de las Aguas Marinas y Costeras en el Caribe y Pacífico Colombianos. Red de Vigilancia para la Conservación y Protección de las Aguas Marinas y Costeras de Colombia–REDCAM: INVEMAR, MinAmbiente, CORALINA, CORPOGUAJIRA, CORPAMAG, CRA, CARDIQUE, CARSUCRE, CVS, CORPOURABÁ, CODECHOCÓ, CVC, CRC y CORPONARIÑO. Informe Técnico 2019; Serie de Publicaciones Periódicas No. 4 del INVEMAR; INVEMAR: Santa Marta, Colombia, 2020; 171p. [Google Scholar]
- Bayraktarov, E.; Pizarro, V.; Wild, C. Spatial and temporal variability of water quality in the coral reefs of Tayrona National Natural Park, Colombian Caribbean. Environ. Monit. Assess. 2014, 186, 3641–3659. [Google Scholar] [CrossRef] [PubMed]
- [Dataset] REDCAM, 2018. Open Data of the Surveillance Network for the Conservation and Protection of Marine and Coastal Waters of Colombia (REDCAM). The Physicochemical and Microbiological Variables Considered on Superficial Water Level. Available online: http://www.invemar.org.co/datos-abiertos (accessed on 27 June 2019).
- Vivas-Aguas, L.J.; Ibarra, K.; Sánchez, J.; Martínez, M.; Nieto, Y.; Moreno, Y.; Cuadrado, I.P.; Obando Garcés, O.; Sánchez, D.; Villarraga, M.; et al. Diagnóstico y Evaluación de la Calidad de las Aguas Marinas y Costeras del Caribe y Pacifico Colombianos; Serie de Publicaciones del INVEMAR No. 4 Red de Vigilancia para la Conservación y Protección de las Aguas Marinas y Costeras de Colombia (REDCAM), Informe Técnico 2014; INVEMAR: Santa Marta, Colombia, 2015; 320p. [Google Scholar]
- Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). Gráficos de Seguimiento Diario de la Precipitación. 2019. Available online: http://www.ideam.gov.co/web/tiempo-y-clima/graficos-seguimiento-diarioprecipitacion-principales-ciudades (accessed on 28 March 2019).
- Guisande, C.; Vaamonde, A.; Barreiro, A. Tratamiento de datos con R, STATISTICA y SPSS; Ediciones Díaz de Santos: Madrid, Spain, 2013; 978p. [Google Scholar]
- Guisande, C.; Heine, J.; González-Da Costa, J.; García-Roselló, E. RWizard Software; RWizard: Vigo, Spain, 2014. [Google Scholar]
- UNESCO. Manual para la Vigilancia del Aceite y de los Hidrocarburos del Petróleo Disueltos/Dispersos en el Agua de Mar y en las Playas; Manuales y Guías No. 13 de la COI; UNESCO: Paris, France, 1984; 87p. [Google Scholar]
- [Dataset] Centro de Información Turística de Colombia (CITUR). Visitantes a Parques Nacionales Naturales. Ministerio de Comercio, Industria y Turismo. 2019. Available online: http://www.citur.gov.co/estadisticas/df_parques_naturales/all/18 (accessed on 17 July 2019).
- Mancera, J.; Pinto, G.; Vilardy, S. Patrones de distribución estacional de masas de agua en la bahía de Santa Marta, Caribe colombiano: Importancia relativa del upwelling y outwelling. Bol. Investig. Mar. Costeras 2013, 2, 329–360. [Google Scholar] [CrossRef]
- INVEMAR. Diagnóstico y Evaluación de la Calidad de las Aguas Marinas y Costeras en el Caribe y Pacífico Colombianos. Red de Vigilancia para la Conservación y Protección de las Aguas Marinas y Costeras de Colombia: INVEMAR, MADS y CAR costeras. Informe Técnico 2016; Serie de Publicaciones Periódicas No. 4 (2017) del INVEMAR; INVEMAR: Santa Marta, Colombia, 2017; 260p. [Google Scholar]
- Franco-Herrera, A.; Torres, C.; Sanjuán, A.; García, L.; Ramírez, S.; López, D. Variabilidad Oceanográfica en la zona Costera de Departamento del Magdalena, Caribe Colombiano: Un Sistema de alto valor Trófico. Centro de Formación de la Cooperación Española en Cartagena de Indias: Biodiversidad y Turismo para un Desarrollo Sostenible. 2011. Available online: https://www.academia.edu/4026069/Variabilidad_oceanogr%C3%A1fica_en_la_zona_costera_de_departamento_del_Magdalena_Caribe_colombiano_Un_sistema_de_alto_valor_tr%C3%B3fico (accessed on 18 January 2019).
- Bastidas, M.; Ordóñez, S.; Ricaurte, C. Eventos de intensificación y relajación del viento en la bahía de Santa Marta (Caribe colombiano): Implicaciones oceanográficas. Bol. Investig. Mar. Costeras 2016, 45, 181–196. [Google Scholar] [CrossRef]
- Iñiguez-Armijos, C.; Sánchez, J.; Villareal, M.; Aguilar, S.; Rosado, D. Effects of bathing intensity, rainfall events, and location on the recreational water quality of stream pools in southern Ecuador. Chemosphere 2020, 243, 125442. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, J.; Chen, H.; Zhang, G. Factors influencing nutrient dynamics in the eutrophic Jiaozhou Bay, North China. Prog. Oceanogr. 2005, 66, 66–85. [Google Scholar] [CrossRef]
- Betancourt, J.; Sánchez, J.; Mejía-Ladino, L.; Cantera, J. Calidad de las aguas superficiales de bahía Málaga, Pacífico colombiano. Acta Biol. Colomb. 2011, 16, 175–192. [Google Scholar]
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef]
- Paerl, H. Assessing and managing nutrient-enhaced eutrophication in estuarine and coastal waters: Interactive effects of human and climatic perturbations. Ecol. Eng. 2006, 26, 40–54. [Google Scholar] [CrossRef]
- Castro, I.B. Improper environmental sampling design bias assessments of coastal contamination. Trends Environ. Anal. Chem. 2019, 24, e00068. [Google Scholar] [CrossRef]
- Pusceddu, F.H.; Sugauara, L.E.; Rodrigues de Marchi, M.; Choueri, R.B.; Castro, Í.B. Estrogen levels in surface sediments from a multi-impacted Brazilian estuarine system. Mar. Pollut. Bull. 2019, 142, 576–580. [Google Scholar] [CrossRef] [PubMed]
- Garcés-Ordóñez, O.; Arteaga, E.; Obando, P.; Vivas-Aguas, L.J.; Espinosa, L.; González, M.; Giraldo, C.; Ricaurte, C. Atención a Eventuales Emergencias Ambientales en la Zona Marino-Costera del Departamento del Magdalena; Convenio CORPAMAG-INVEMAR No. 14 de 2014, Código: PRY-CAM-011-14, Informe Técnico Final; INVEMAR: Santa Marta, Colombia, 2016; 79p. [Google Scholar]
- Kocasoy, G. The relationship between coastal tourism, sea pollution and public health: A case study from Turkey. Environmentalist 1989, 9, 245–251. [Google Scholar] [CrossRef]
- MinSalud. Decreto No. 1594 del 26 de Junio de 1984. Por el cual se Reglamenta Parcialmente el Título I de la Ley 9 de 1979, así como el Capítulo II del Título VI–Parte III-Libro II y el Título III de la Parte III–Libro I–del Decreto–Ley 2811 de 1974 en Cuanto a Usos del Agua y Residuos Líquidos; MinSalud: Bogotá, Colombia, 1984; 61p. [Google Scholar]
- Commendatore, M.G.; Franco, M.A.; Gomes, P.; Castro, I.B.; Fillmann, G.; Bigatti, G.; Esteves, J.; Nievas, M.L. Butyltins, polyaromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls in sediments and bivalve mollusks in a mid-latitude environment from the Patagonian coastal zone. Environ. Toxicol. Chem. 2015, 34, 2750–2763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pikkarainen, A.; Lemponen, P. Petroleum hydrocarbon concentrations in Baltic Sea subsurface water. Boreal Environ. Res. 2005, 10, 125–134. [Google Scholar]
- El-Tohamy, W.; Azab, Y.; Aziz, N.A. Evaluation of the Water Quality of Damietta Harbor: Using the Zooplankton Diversity and the Traditional Water Quality Parameters. Int. J. Ocean. Oceanogr. 2019, 13, 229–246. [Google Scholar]
- Zanardi, E.; Bícego, M.C.; Weber, R.R. Dissolved dispersed petroleum aromatic hydrocarbons in the São Sebastião Channel, São Paulo, Brazil. Mar. Pollut. Bull. 1999, 38, 410–413. [Google Scholar] [CrossRef]
- Acuña-González, J.; Vargas-Zamora, J.; Gómez-Ramírez, E.; García-Céspedes, J. Hidrocarburos de petróleo disueltos y dispersos, en cuatro ambientes costeros de Costa Rica. Rev. Biol. Trop. 2004, 52, 43–50. [Google Scholar] [PubMed]
- Rubiera, J. Early Warning for Hurricanes. In Proceedings of the Thematic Session Cluster 2 World Conference on Disaster Reduction, Kobe, Japan, 18–22 January 2005. [Google Scholar]
- Ortíz, J.C. Huracanes y tormentas tropicales en el Mar Caribe colombiano desde 1900. Bol. Científico (CIOH) 2007, 25, 54–60. [Google Scholar] [CrossRef]
- Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe (CIOH). Climatología del Caribe: Ciclones Tropicales. 2019. Available online: https://www.cioh.org.co/meteorologia/Climatologia/ClimatologiaCaribe6.php (accessed on 13 March 2019).
- Yu-Fai, L.; Anna, S.; Glen, H.; Ralf, B.; Groves, C. (Eds.) Tourism and Visitor Management in Protected Areas: Guidelines for Sustainability; Best Practice Protected Area Guidelines Series No. 27; IUCN: Gland, Switzerland, 2018; 120p. [Google Scholar] [CrossRef]
- Makri, P.; Stathopoulou, E.; Hermides, D.; Kontakiotis, G.; Zarkogiannis, S.D.; Skilodimou, H.D.; Bathrellos, G.D.; Antonarakou, A.; Scoullos, M. The Environmental Impact of a Complex Hydrogeological System on Hydrocarbon-Pollutants’ Natural Attenuation: The Case of the Coastal Aquifers in Eleusis, West Attica, Greece. J. Mar. Sci. Eng. 2020, 8, 1018. [Google Scholar] [CrossRef]
- Castro, I.B.; Machado, F.B.; Tavares de Sousa, G.; Paz-Villarraga, C.; Fillmann, G. How protected are marine protected areas: A case study of tributyltin in Latin America. J. Environ. Manag. 2021, 278 Pt 2, 111543. [Google Scholar] [CrossRef]
- Nunes, B.; Zanardi-Lamardo, E.; Choueri, R.B.; Castro, Í.B. Marine protected areas in Latin America and Caribbean threatened by polycyclic aromatic hydrocarbons. Environ. Pollut. 2021, 269, 116194. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Grimon, R.; Campos, N.H.; Castro, Í.B. Imposex Incidence in Gastropod Species from Santa Marta Coastal Zone, Colombian Caribbean Sea. Bull. Environ. Contam. Toxicol. 2020, 105, 728–735. [Google Scholar] [CrossRef] [PubMed]
Variables | N Dry/Rainy | Sampling Stations | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Santa Marta (SM) | Bahía Concha (BC) | Nenguange (Neg) | |||||||||||
Dry | Rainy | Dry | Rainy | Dry | Rainy | ||||||||
Av | sd | Av | sd | Av | sd | Av | sd | Av | sd | Av | sd | ||
Salinity (o/oo) | 9/6 | 36.3 | 0.2 | 36.1 | 0.2 | 36.3 * | 0.1 | 35.5 | 0.4 | 36.6 * | 0.1 | 36.0 | 0.4 |
DO (mg/L) | 9/6 | 6.8 * | 0.9 | 5.3 | 0.8 | 6.5 * | 0.4 | 5.6 | 0.5 | 5.8 | 0.3 | 5.5 | 0.6 |
pH | 9/6 | 8.1 | 0.1 | 8.1 | 0.1 | 8.2 | 0.1 | 8.1 | 0.1 | 8.0 | 0.0 | 8.0 | 0.1 |
SST (mg/L) | 9/6 | 21.2 | 9.8 | 24.3 | 8.4 | 30.5 | 9.4 | 29.6 | 13.1 | 21.9 | 12.1 | 18.1 | 1.7 |
P-PO43− (µg/L) | 9/6 | 3.1 | 1.1 | 2.5 | 0.8 | 2.1 * | 0.5 | 1.2 | 0.6 | 2.4 | 0.1 | 2.3 | 0.1 |
N-NO2− (µg/L) | 9/6 | 2.4 * | 1.5 | 1.4 | 0.9 | 1.2 | 0.1 | 0.5 | 0.1 | 0.9 | 0.4 | 0.6 | 0.1 |
N-NO3− (µg/L) | 9/6 | 9.9 | 8.7 | 3.9 | 2.0 | 4.6 * | 2.9 | 1.5 | 0.4 | 6.1 | 3.5 | 2.6 | 0.9 |
N-NH4+ (µg/L) | 9/6 | 2.9 | 0.1 | 2.7 | 0.5 | 23.9 * | 41.8 | 2.6 | 0.2 | 4.3 | 2.0 | 2.9 | 0.3 |
DDPH (µg/L) | 9/6 | 0.8 | 0.7 | 0.4 | 0.1 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 * | 0.1 | 0.1 | 0.1 |
TC (NMP/100 mL) | 9/6 | 119 | 163 | 438 * | 89 | 65 | 93 | 5 | 3 | 18 | 22 | 3 | 1 |
Maritime traffic | 11/9 | 0.733 | 0.363 | 0.547 | 0.188 | 0.222 | 0.144 | 0.266 | 0.187 | 0.146 | 0.091 | 0.209 | 0.153 |
VEc | 11/9 | 0.208 | 0.149 | 0.140 | 0.061 | 0.202 | 0.139 | 0.246 | 0.183 | 0.128 | 0.092 | 0.190 | 0.152 |
VEe | 11/9 | 0.128 | 0.052 | 0.126 | 0.025 | 0.015 | 0.006 | 0.016 | 0.007 | 0.014 | 0.007 | 0.014 | 0.006 |
VEt | 11/9 | 0.398 | 0.296 | 0.283 | 0.176 | 0.005 | 0.003 | 0.006 | 0.004 | 0.002 | 0.002 | 0.003 | 0.003 |
Pluviosity (mm) | 10/14 | 12 | 13 | 89 * | 31 | 71 | 13 | 148 * | 74 | 71 | 13 | 148 * | 74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Grimón, R.; Campos, N.H.; Castro, Í.B. Effect of Maritime Traffic on Water Quality Parameters in Santa Marta, Colombia. J. Mar. Sci. Eng. 2021, 9, 474. https://doi.org/10.3390/jmse9050474
Rodríguez-Grimón R, Campos NH, Castro ÍB. Effect of Maritime Traffic on Water Quality Parameters in Santa Marta, Colombia. Journal of Marine Science and Engineering. 2021; 9(5):474. https://doi.org/10.3390/jmse9050474
Chicago/Turabian StyleRodríguez-Grimón, René, Nestor Hernando Campos, and Ítalo Braga Castro. 2021. "Effect of Maritime Traffic on Water Quality Parameters in Santa Marta, Colombia" Journal of Marine Science and Engineering 9, no. 5: 474. https://doi.org/10.3390/jmse9050474
APA StyleRodríguez-Grimón, R., Campos, N. H., & Castro, Í. B. (2021). Effect of Maritime Traffic on Water Quality Parameters in Santa Marta, Colombia. Journal of Marine Science and Engineering, 9(5), 474. https://doi.org/10.3390/jmse9050474