Numerical Simulation of Wind Wave Using Ensemble Forecast Wave Model: A Case Study of Typhoon Lingling
Abstract
:1. Introduction
2. Methodology
2.1. Ensemble Wave Model Setup
2.2. Numerical Method
3. Results
3.1. Sea Wind Prediction Results of 24 Ensemble Members
3.2. Ensemble Wave Model Forecasting Results
3.3. Ensemble Wave Model Forecast Performance and Probabilistic Verification Result
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Molteni, F.; Buizza, R.; Palmer, T.N.; Petroliagis, T. The ECMWF ensemble prediction system: Methodology and validation. Q. J. R. Meteorol. Soc. 1996, 122, 73–119. [Google Scholar] [CrossRef]
- Palmer, T.N. A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parameterization in weather and climate prediction models. Q. J. R. Meteorol. Soc. 2001, 127, 279–304. [Google Scholar]
- Campos, R.M.; Alves, J.-H.G.M.; Penny, S.G.; Krasnopolsky, V. Global assessments of the NCEP Ensemble Forecast System using altimeter data. Ocean Dyn. 2019, 70, 405–419. [Google Scholar] [CrossRef]
- Buizza, R.; Miller, M.; Palmer, T.N. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 1999, 125, 2887–2908. [Google Scholar] [CrossRef]
- Harrison, M.S.J.; Palmer, T.N.; Richardson, D.S.; Buizza, R. Analysis and model dependencies in medium-range ensembles: Two transplant case-studies. Q. J. R. Meteorol. Soc. 1999, 125, 2487–2515. [Google Scholar] [CrossRef]
- Lenartz, F.; Beckers, J.-M.; Chiggiato, J.; Mourre, B.; Troupin, C.; Vandenbulcke, L.; Rixen, M. Super-ensemble techniques applied to wave forecast: Performance and limitations. Ocean Sci. 2010, 6, 595–604. [Google Scholar] [CrossRef] [Green Version]
- O’Donncha, F.; Zhang, Y.; Chen, B.; James, S.C. Ensemble model aggregation using a computationally lightweight machine-learning model to forecast ocean waves. J. Mar. Syst. 2019, 199, 103206. [Google Scholar] [CrossRef] [Green Version]
- Campos, R.M.; Krasnopolsky, V.; Alves, J.-H.G.M.; Penny, S.G. Improving NCEP’s global-scale wave ensemble averages using neural networks. Ocean Model. 2020, 149, 101617. [Google Scholar] [CrossRef]
- Saetra, Ø.; Bidlot, J.R. Potential benefits of using probabilistic forecasts for waves and marine winds based on the ECMWF Ensemble Prediction System. Weather Forecast. 2004, 19, 673–689. [Google Scholar] [CrossRef]
- Chen, H.S. Ensemble Prediction of Ocean Waves at NCEP. In Proceedings of the 28th Ocean Engineering Conference, NSYSU, Taipei, Taiwan, 30 November–2 December 2006; pp. 25–37. [Google Scholar]
- Cao, D.; Tolman, H.L.; Chen, H.S.; Chawla, A.; Gerald, V.M. Performance of the ocean wave ensemble forecast system at NCEP. In Proceedings of the 11th International Workshop on Wave Hindcasting & Forecasting and 2nd Coastal Hazards Symposium, Halifax, NS, Canada, 18–23 October 2009. [Google Scholar]
- Chang, H.-W.; Yen, C.-C.; Lin, M.-C.; Chu, C.-H. Establishment and performance of the ocean wave ensemble forecast system at CWB. J. Mar. Sci. Technol. 2017, 25, 588–598. [Google Scholar]
- Tuomi, L.; Pettersson, H.; Fortelius, C.; Tikka, K.; Björkqvist, J.-V.; Kahma, K.K. Wave modelling in archipelagos. Coast. Eng. 2014, 83, 205–220. [Google Scholar] [CrossRef]
- Gorman, R.M.; Oliver, H.J. Automated model optimisation using the Cylc workflow engine (Cyclops v1.0). Geosci. Model Dev. 2018, 11, 2153–2173. [Google Scholar] [CrossRef] [Green Version]
- Osinski, R.D.; Radtke, H. Ensemble hindcasting of wind and wave conditions with WRF and WAVEWATCH IIIr driven by ERA5. Ocean Sci. 2020, 16, 355–371. [Google Scholar] [CrossRef] [Green Version]
- Pardowitz, T.; Befort, D.J.; Leckebusch, G.C.; Ulbrich, U. Estimating uncertainties from high resolution simulations of extreme wind storms and consequences for impacts. Meteorol. Z. 2016, 25, 531–541. [Google Scholar] [CrossRef]
- Hamill, T.M. Interpretation of rank histograms for verifying ensemble forecasts. Mon. Weather Rev. 2001, 129, 550–560. [Google Scholar] [CrossRef]
- Cao, D.; Chen, H.S.; Tolman, H.L. Verification of Ocean Wave Ensemble Forecast at NCEP. In Proceedings of the 10th International Workshop on Wave Hindcasting and Forecasting & Coastal Hazards Symposium, Oahu, HI, USA, 11–16 November 2007. [Google Scholar]
- Bunney, C.; Saulter, A. An ensemble forecast system for prediction of Atlantic–UK wind waves. Ocean Model. 2015, 96, 103–116. [Google Scholar] [CrossRef]
- Barker, T.W. The relationship between spread and forecast error in extended-range forecasts. J. Clim. 1991, 4, 733–742. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, J.S.; Loughe, A.F. The relationship between ensemble spread and ensemble mean skill. Mon. Weather Rev. 1998, 126, 3292–3302. [Google Scholar] [CrossRef] [Green Version]
- Hopson, T.M. Assessing the ensemble spread–error relationship. Mon. Weather Rev. 2014, 142, 1125–1142. [Google Scholar] [CrossRef]
- Tolman, H.L.; Chalikov, D. Source terms in a third-generation wind wave model. J. Phys. Oceanogr. 1996, 26, 2497–2518. [Google Scholar] [CrossRef] [Green Version]
- Hasselmann, K.; Barnett, T.P.; Bouws, E.; Carlson, H.; Cartwright, D.E.; Enke, K.; Ewing, A.; Gienapp, H.; Hasselmann, D.E.; Kruseman, P.; et al. Measurements of windwave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z. 1973, 8, 1–95. [Google Scholar]
- Ardhuin, F.; Rogers, E.; Babanin, A.V.; Filipot, J.-F.; Magne, R.; Roland, A.; Westhuysen, A.; Queffeulou, P.; Lefevre, J.-M.; Aouf, L.; et al. Semiempirical dissipation source functions for ocean waves. Part I: Definition, Calibration, and Validation. J. Phys. Oceanogr. 2010, 40, 1917–1941. [Google Scholar] [CrossRef] [Green Version]
- Park, J.S.; Kang, K.K.; Kang, H.-S. Development and evaluation of an ensemble forecasting system for the regional ocean wave of Korea. J. Korean Soc. Coast. Ocean Eng. 2018, 30, 84–94. [Google Scholar] [CrossRef]
- Palmer, T.; Buizza, R.; Hagedorn, R.; Lawrence, A.; Leutbecher, M.; Smith, L. Ensemble prediction: A pedagogical perspective. ECMWF Newsl. 2005, 106, 10–17. [Google Scholar]
- Murphy, A.H.; Winkler, R.L. Diagnostic verification of probability forecasts. Int. J. Forecast. 1992, 7, 435–455. [Google Scholar] [CrossRef]
- Mason, I. A model for assessment of weather forecasts. Aust. Meteor. Mag. 1982, 30, 291–303. [Google Scholar]
- Chang, H.-L.; Yang, S.-C.; Yuan, H.; Lin, P.-L.; Liou, Y.-C. Analysis of the relative operating characteristic and economic value using the LAPS Ensemble Prediction System in Taiwan. Mon. Weather Rev. 2015, 143, 1833–1848. [Google Scholar] [CrossRef]
Model | WAVEWATCH III Ver. 4.18 |
Coordinate | Spherical coordinate |
Domain | 115° E–150° E, 20° N–50° N |
Resolution | 1/12° × 1/12° (421 × 361) |
Forecast Time | +120 h (3 h of time-interval) |
Initial Condition | 12 h forecast from the previous run |
Boundary Condition | From the regional wave model |
Wind Forcing Data | EPSG (UM N400 L70 M49) 10 m sea winds |
Model Cycle | 2/day (00 UTC, 12 UTC) |
Ensemble Member | 24 |
No. | Buoy ID | Location | Longitude (Deg.) | Latitude (Deg.) |
---|---|---|---|---|
1 | 22104 | Geojedo | 128.90 | 34.77 |
2 | 22106 | Pohang | 129.78 | 36.35 |
3 | 22188 | Tongyeong | 128.23 | 34.39 |
4 | 22189 | Ulsan | 129.84 | 35.35 |
5 | 22101 | Deokjeokdo | 126.02 | 37.23 |
6 | 22108 | Oeyeondo | 125.75 | 36.25 |
7 | 22185 | Incheon | 125.43 | 37.09 |
8 | 22105 | Donghae | 130.00 | 37.53 |
9 | 21229 | Ulleungdo | 131.11 | 37.46 |
10 | 22190 | Uljin | 129.87 | 36.91 |
11 | 22102 | Chilbaldo | 125.77 | 34.80 |
12 | 22103 | Geomundo | 127.50 | 34.00 |
13 | 22184 | Chujado | 126.14 | 33.79 |
14 | 22183 | Shinan | 126.24 | 34.73 |
15 | 22186 | Buan | 125.81 | 35.66 |
16 | 22187 | Seogwipo | 127.02 | 33.13 |
17 | 22107 | Marado | 126.03 | 33.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roh, M.; Kim, H.-S.; Chang, P.-H.; Oh, S.-M. Numerical Simulation of Wind Wave Using Ensemble Forecast Wave Model: A Case Study of Typhoon Lingling. J. Mar. Sci. Eng. 2021, 9, 475. https://doi.org/10.3390/jmse9050475
Roh M, Kim H-S, Chang P-H, Oh S-M. Numerical Simulation of Wind Wave Using Ensemble Forecast Wave Model: A Case Study of Typhoon Lingling. Journal of Marine Science and Engineering. 2021; 9(5):475. https://doi.org/10.3390/jmse9050475
Chicago/Turabian StyleRoh, Min, Hyung-Suk Kim, Pil-Hun Chang, and Sang-Myeong Oh. 2021. "Numerical Simulation of Wind Wave Using Ensemble Forecast Wave Model: A Case Study of Typhoon Lingling" Journal of Marine Science and Engineering 9, no. 5: 475. https://doi.org/10.3390/jmse9050475
APA StyleRoh, M., Kim, H. -S., Chang, P. -H., & Oh, S. -M. (2021). Numerical Simulation of Wind Wave Using Ensemble Forecast Wave Model: A Case Study of Typhoon Lingling. Journal of Marine Science and Engineering, 9(5), 475. https://doi.org/10.3390/jmse9050475