Age, Growth and Otolith Microstructure of the Spotted Lanternfish Myctophum punctatum Rafinesque 1810
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Length-Weight Relationship
2.3. Otolith Extraction and Preparation
2.4. Otolith Readings, Increments’ Interpretation and Analysis
2.5. Growth Models
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Catul, V.; Gauns, M.; Karuppasamy, P.K. A review on mesopelagic fishes belonging to family Myctophidae. Rev. Fish Biol. Fish. 2011, 21, 339–354. [Google Scholar] [CrossRef]
- Gjøsæter, J.; Kawaguchi, K. A review of the world resources of mesopelagic fish. FAO Fish. Tech. Pap. 1980, 193, 1–151. [Google Scholar]
- Cherel, Y.; Fontaine, C.; Richard, P.; Labatc, J.-P. Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnol. Oceanogr. 2010, 55, 324–332. [Google Scholar] [CrossRef]
- Battaglia, P.; Andaloro, F.; Consoli, P.; Esposito, V.; Malara, D.; Musolino, S.; Pedà, C.; Romeo, T. Feeding habits of the Atlantic bluefin tuna, Thunnus thynnus (L. 1758), in the central Mediterranean Sea (Strait of Messina). Helgol. Mar. Res. 2013, 67, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Moku, M.; Kawaguchi, K.; Watanabe, H.; Ohno, A. Feeding habits of three dominant myctophid fishes, Diaphus theta, Stenobrachius leucopsarus and S. nannochir, in the subarctic and transitional waters of the western North Pacific. Mar. Ecol. Prog. Ser. 2000, 207, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, P.; Andaloro, F.; Esposito, V.; Granata, A.; Guglielmo, L.; Guglielmo, R.; Musolino, S.; Romeo, T.; Zagami, G. Diet and trophic ecology of the lanternfish Electrona risso (Cocco 1829) in the Strait of Messina (central Mediterranean Sea) and potential resource utilization from the Deep Scattering Layer (DSL). J. Mar. Syst. 2016, 159, 100–108. [Google Scholar] [CrossRef]
- Battaglia, P.; Pagano, L.; Consoli, P.; Esposito, V.; Granata, A.; Guglielmo, L.; Pedá, C.; Romeo, T.; Zagami, G.; Vicchio, T.M. Consumption of mesopelagic prey in the Strait of Messina, an upwelling area of the central Mediterranean Sea: Feeding behaviour of the blue jack mackerel Trachurus picturatus (Bowdich, 1825). Deep Sea Res. Part I Oceanogr. Res. Pap. 2020, 155, 103158. [Google Scholar] [CrossRef]
- Linkowski, T.B. Lunar rhythms of vertical migrations coded in otolith microstructure of North Atlantic lanternfishes, genus Hygophum (Myctophidae). Mar. Biol. 1996, 124, 495–508. [Google Scholar] [CrossRef]
- Takagi, K.; Yatsu, A.; Moku, M.; Sassa, C. Age and growth of lanternfishes, Symbolophorus californiensis and Ceratoscopelus warmingii (Myctophidae), in the Kuroshio–Oyashio Transition Zone. Ichthyol. Res. 2006, 53, 281–289. [Google Scholar] [CrossRef]
- Bystydzieńska, Z.E.; Phillips, A.J.; Linkowski, T.B. Larval stage duration, age and growth of blue lanternfish Tarletonbeania crenularis (Jordan and Gilbert, 1880) derived from otolith microstructure. Environ. Biol. Fishes 2010, 89, 493–503. [Google Scholar] [CrossRef] [Green Version]
- Hosseini-Shekarabi, S.P.; Valinassab, T.; Bystydzieńska, Z.; Linkowski, T. Age and growth of Benthosema pterotum (Alcock, 1890)(Myctophidae) in the Oman Sea. J. Appl. Ichthyol. 2015, 31, 51–56. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Chen, Z.; Jiang, Y.; Xu, S.; Li, Z.; Wang, X.; Ying, Y.; Zhao, X.; Zhou, M. Age and growth of Myctophum asperum in the South China Sea based on otolith microstructure analysis. Deep Sea Res. Part II Top. Stud. Oceanogr. 2019, 167, 121–127. [Google Scholar] [CrossRef]
- Gjøsæter, H. Primary growth increments in otoliths of six tropical myctophid species. Biol. Oceanogr. 1987, 4, 359–382. [Google Scholar]
- Gartner, J.V., Jr. Life histories of three species of lanternfishes (Pisces: Myctophidae) from the eastern Gulf of Mexico. Mar. Biol. 1991, 111, 11–20. [Google Scholar] [CrossRef]
- Linkowski, T.B. Otolith microstructure and growth patterns during the early life history of lanternfishes (family Myctophidae). Can. J. Zool. 1991, 69, 1777–1792. [Google Scholar] [CrossRef]
- Suthers, I.M. Spatial variability of recent otolith growth and RNA indices in pelagic juvenile Diaphus kapalae (Myctophidae): An effect of flow disturbance near an island? Mar. Freshw. Res. 1996, 47, 273–282. [Google Scholar] [CrossRef]
- Greely, T.M.; Gartner, J.V., Jr.; Torres, J.J. Age and growth of Electrona antarctica (Pisces: Myctophidae), the dominant mesopelagic fish of the Southern Ocean. Mar. Biol. 1999, 133, 145–158. [Google Scholar] [CrossRef]
- Hayashi, A.; Kawaguchi, K.; Watanabe, H.; Ishida, M. Daily growth increment formation and its lunar periodicity in otoliths of the myctophid fish Myctophum asperum (Pisces: Myctophidae). Fish. Sci. 2001, 67, 811–817. [Google Scholar] [CrossRef] [Green Version]
- Moku, M.; Ishimaru, K.; Kawaguchi, K. Growth of larval and juvenile Diaphus theta (Pisces: Myctophidae) in the transitional waters of the western North Pacific. Ichthyol. Res. 2001, 48, 385–390. [Google Scholar] [CrossRef]
- Moku, M.; Hayashi, A.; Mori, K.; Watanabe, Y. Validation of daily otolith increment formation in the larval myctophid fish Diaphus slender-type spp. J. Fish Biol. 2005, 67, 1481–1485. [Google Scholar] [CrossRef]
- Valinassab, T.; Pierce, G.J.; Johannesson, K. Lantern fish (Benthosema pterotum) resources as a target for commercial exploitation in the Oman Sea. J. Appl. Ichthyol. 2007, 23, 573–577. [Google Scholar] [CrossRef]
- Battaglia, P.; Ammendolia, G.; Cavallaro, M.; Consoli, P.; Esposito, V.; Malara, D.; Rao, I.; Romeo, T.; Andaloro, F. Influence of lunar phases, winds and seasonality on the stranding of mesopelagic fish in the Strait of Messina (Central Mediterranean Sea). Mar. Ecol. 2017, 38, e12459. [Google Scholar] [CrossRef]
- Olivar, M.P.; Bernal, A.; Molí, B.; Peña, M.; Balbín, R.; Castellón, A.; Miquel, J.; Massutí, E. Vertical distribution, diversity and assemblages of mesopelagic fishes in the western Mediterranean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2012, 62, 53–69. [Google Scholar] [CrossRef]
- Di Carlo, B.S.; Costanzo, G.; Fresi, E.; Guglielmo, L.; Ianora, A. Myctophum punctatum. Mar. Ecol. Prog. Ser. 1982, 9, 13–24. [Google Scholar]
- Hulley, P.A. Myctophidae; Whitehead, P.J.P., Bauchot, M.-L., Hureau, J.-C., Nielsen, J., Tortonese, E., Eds.; Unesco: Paris, France, 1984; Volume 1. [Google Scholar]
- Fossi, M.C.; Pedà, C.; Compa, M.; Tsangaris, C.; Alomar, C.; Claro, F.; Ioakeimidis, C.; Galgani, F.; Hema, T.; Deudero, S. Bioindicators for monitoring marine litter ingestion and its impacts on Mediterranean biodiversity. Environ. Pollut. 2018, 237, 1023–1040. [Google Scholar] [CrossRef]
- Lauritano, C.; Martínez, K.A.; Battaglia, P.; Granata, A.; de la Cruz, M.; Cautain, B.; Martìn, J.; Reyes, F.; Ianora, A.; Guglielmo, L. First evidence of anticancer and antimicrobial activity in Mediterranean mesopelagic species. Sci. Rep. 2020, 10, 4929. [Google Scholar] [CrossRef] [PubMed]
- Le Cren, E.D. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J. Anim. Ecol. 1951, 20, 201–219. [Google Scholar] [CrossRef] [Green Version]
- Froese, R. Cube law, condition factor and weight–length relationships: History, meta-analysis and recommendations. J. Appl. Ichthyol. 2006, 22, 241–253. [Google Scholar] [CrossRef]
- Froese, R.; Tsikliras, A.C.; Stergiou, K.I. Editorial note on weight–length relations of fishes. Acta Ichthyol. Piscat. 2011, 41, 261–263. [Google Scholar] [CrossRef] [Green Version]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods; Iowa State University Press: Iowa City, IA, USA, 1967. [Google Scholar]
- Soliani, L. Manuale di Statistica per la Ricerca e la Professione. 2005. Available online: http//www.dsa.unipr.it/soliani/soliani.html (accessed on 15 June 2021).
- Battaglia, P.; Malara, D.; Romeo, T.; Andaloro, F. Relationships between otolith size and fish size in some mesopelagic and bathypelagic species from the Mediterranean Sea (Strait of Messina, Italy). Sci. Mar. 2010, 74, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, P.; Malara, D.; Ammendolia, G.; Romeo, T.; Andaloro, F. Relationships between otolith size and fish length in some mesopelagic teleosts (Myctophidae, Paralepididae, Phosichthyidae and Stomiidae). J. Fish Biol. 2015, 87, 774–782. [Google Scholar] [CrossRef]
- Brothers, E.B. Otolith studies. Ontog. Syst. Fishes Spec. Publ. 1984, 1, 50–57. [Google Scholar]
- Giragosov, V.; Ovcharov, O.P. Age and growth of the lantern fish Myctophum nitidulum (Myctophidae) from the tropical Atlantic. J. Ichthyol. 1992, 32, 34–42. [Google Scholar]
- Hayashi, A.; Watanabe, H.; Ishida, M.; Kawaguchi, K. Growth of Myctophum asperum (Pisces: Myctophidae) in the Kuroshio and transitional waters. Fish. Sci. 2001, 67, 983–984. [Google Scholar] [CrossRef]
- Tomás, J.; Panfili, J. Otolith microstructure examination and growth patterns of Vinciguerria nimbaria (Photichthyidae) in the tropical Atlantic Ocean. Fish. Res. 2000, 46, 131–145. [Google Scholar] [CrossRef]
- Stevenson, D.K.; Campana, S.E. Otolith microstructure examination and analysis. Can. Spec. Publ. Fish. Aquat. Sci. 1992, 117, 1–126. [Google Scholar]
- Gompertz, B. XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. FRS &c. Philos. Trans. R. Soc. Lond. 1825, 115, 513–583. [Google Scholar]
- Von Bertalanffy, L. A quantitative theory of organic growth (inquiries on growth laws. II). Hum. Biol. 1938, 10, 181–213. [Google Scholar]
- Ricker, W.E. Linear regressions in fishery research. J. Fish. Board Can. 1973, 30, 409–434. [Google Scholar] [CrossRef]
- Ricker, W.E. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Bd. Can. 1975, 191, 1–382. [Google Scholar]
- Katsanevakis, S. Modelling fish growth: Model selection, multi-model inference and model selection uncertainty. Fish. Res. 2006, 81, 229–235. [Google Scholar] [CrossRef]
- Katsanevakis, S.; Maravelias, C.D. Modelling fish growth: Multi-model inference as a better alternative to a priori using von Bertalanffy equation. Fish Fish. 2008, 9, 178–187. [Google Scholar] [CrossRef]
- Smart, J.J.; Chin, A.; Tobin, A.J.; Simpfendorfer, C.A. Multimodel approaches in shark and ray growth studies: Strengths, weaknesses and the future. Fish Fish. 2016, 17, 955–971. [Google Scholar] [CrossRef]
- Ogle, D.H. Introductory Fisheries Analyses with R; Taylor & Francis Group, CRC Press: Boca Raton, FL, USA, 2016; ISBN 131536252X. [Google Scholar]
- Baty, F.; Delignette-Muller, M.L. Nlstools: Tools for Nonlinear Regression Analysis; R Package Version, 2015; Volume 1. Available online: https://cran.r-project.org/web/packages/nlstools/nlstools.pdf (accessed on 15 June 2021).
- Akaike, H. Information theory as an extension of the maximum likelihood principle. In Second International Symposium on Information Theory; Petrov, B.N., Csaki, F., Eds.; Akademiai Kiado: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. A practical information-theoretic approach. In Model Selection and Multimodel Inference, 2nd ed.; Springer: New York, NY, USA, 2002; Volume 2. [Google Scholar]
- Akaike, H. Information measures and model selection. Int. Stat. Inst. 1983, 44, 277–291. [Google Scholar]
- Hurvich, C.M.; Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 1989, 76, 297–307. [Google Scholar] [CrossRef]
- Mazerolle, M.J.; Linden, D. Model Selection and Multimodel Inference Based on (Q) AIC (c). 2019. Available online: https://mran.microsoft.com/snapshot/2020-02-28/web/packages/AICcmodavg/AICcmodavg.pdf (accessed on 1 June 2021).
- Mazerolle, M.J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q) AIC (c). 2020. Available online: https://cran.r-project.org/web/packages/AICcmodavg/AICcmodavg.pdf (accessed on 15 June 2021).
- Team, R.C. R: A Language and Environment for Statistical Computing (Version 3.1.2); R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2015. [Google Scholar]
- Olivar, M.P.; Molí, B.; Bernal, A. Length-weight relationships of mesopelagic fishes in the north-western Mediterranean. In Proceedings of the Rapport du 40th Congress de la Commission Internationale Pour L’exploration Scientifique de la Mer Mediterranée (CIESM), Marseille, France, 28 October–1 November 2013; Volume 40, p. 528. [Google Scholar]
- Sarmiento-Lezcano, A.N.; Triay-Portella, R.; Castro, J.J.; Rubio-Rodríguez, U.; Pajuelo, J.G. Age-based life-history parameters of the mesopelagic fish Notoscopelus resplendens (Richardson, 1845) in the Central Eastern Atlantic. Fish. Res. 2018, 204, 412–423. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Han, J.-R.; Chen, G.-J.; Du, Z.-J. Alteromonas flava sp. nov. and Alteromonas facilis sp. nov., two novel copper tolerating bacteria isolated from a sea cucumber culture pond in China. Syst. Appl. Microbiol. 2019, 42, 217–222. [Google Scholar] [CrossRef]
- López-Pérez, C.; Olivar, M.P.; Hulley, P.A.; Tuset, V.M. Length–weight relationships of mesopelagic fishes from the equatorial and tropical Atlantic waters: Influence of environment and body shape. J. Fish Biol. 2020, 96, 1388–1398. [Google Scholar] [CrossRef]
- Linkowski, T.B.; Radtke, R.L.; Lenz, P.H. Otolith microstructure, age and growth of two species of Ceratoscopelus (Oosteichthyes: Myctophidae) from the eastern North Atlantic. J. Exp. Mar. Bio. Ecol. 1993, 167, 237–260. [Google Scholar] [CrossRef]
- Gjösæter, J. Age, growth, and mortality of the mygtophid fish, Benthosema glaciale (Reinhardt), from Western Norway. Sarsia 1973, 52, 1–14. [Google Scholar] [CrossRef]
- Badcock, J.; Merrett, N.R. Midwater fishes in the eastern North Atlantic—I. Vertical distribution and associated biology in 30 N, 23 W, with developmental notes on certain myctophids. Prog. Oceanogr. 1976, 7, 3–58. [Google Scholar] [CrossRef]
- Loeb, V.J. Larval fishes in the zooplankton community of the North Pacific Central Gyre. Mar. Biol. 1979, 53, 173–191. [Google Scholar] [CrossRef]
- Pannella, G. Growth patterns in fish sagittae. In Skeletal Growth of Aquatic Organisms; Rhoads, D.C., Lutz, R.A., Eds.; Plenum Press: New York, NY, USA, 1980; pp. 519–560. [Google Scholar]
- Ozawa, T.; Peñaflor, G.C. Otolith microstructure and early ontogeny of a myctophid species Benthosema pterotum. Nippon. Suisan Gakkaishi 1990, 56, 1987–1995. [Google Scholar] [CrossRef] [Green Version]
- Sassa, C.; Kawaguchi, K.; Hirota, Y.; Ishida, M. Distribution depth of the transforming stage larvae of myctophid fishes in the subtropical–tropical waters of the western North Pacific. Deep Sea Res. Part I Oceanogr. Res. Pap. 2007, 54, 2181–2193. [Google Scholar] [CrossRef]
- Lester, N.P.; Shuter, B.J.; Abrams, P.A. Interpreting the von Bertalanffy model of somatic growth in fishes: The cost of reproduction. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2004, 271, 1625–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
L∞ | k | t0/I | |
---|---|---|---|
All | 75 | 0.0644 | 120 |
Females | 70 | 0.0872 | 160 |
Males | 75 | 0.1070 | 150 |
K | AICc | Delta_AICc | AICcWt | Cum. Wt | ||
---|---|---|---|---|---|---|
All | Gompertz | 4 | 912.00 | 0 | 0.59 | 0.59 |
VBGM | 4 | 913.07 | 1.07 | 0.35 | 0.94 | |
Logistic | 4 | 916.45 | 4.45 | 0.06 | 1.00 | |
Female | Gompertz | 4 | 419.06 | 0.00 | 0.36 | 0.36 |
VBGM | 4 | 419.23 | 0.16 | 0.34 | 0.70 | |
Logistic | 4 | 419.45 | 0.38 | 0.30 | 1.00 | |
Male | Gompertz | 4 | 347.43 | 0.00 | 0.64 | 0.64 |
Logistic | 4 | 348.60 | 1.17 | 0.36 | 1.00 | |
VBGM | 4 | 377.70 | 30.27 | 0.00 | 1.00 |
Best Model Parameters | Parameters | Estimate | Lower 95% C.I. | Upper 95% C.I. | Std. Error |
---|---|---|---|---|---|
All individuals (Residual standard error: 3.326 on 170 degrees of freedom) | L∞ | 74.79 | 70.86 | 79.71 | 2.28 |
k | 0.0084 | 0.0073 | 0.0096 | 0.0006 | |
I | 139.60 | 133.59 | 147.48 | 3.52 | |
Females (Residual standard error: 3.676 on 73 degrees of freedom) | L∞ | 81.45 | 72.71 | 99.00 | 6.31 |
k | 0.0068 | 0.0047 | 0.0091 | 0.0012 | |
I | 143.90 | 130.77 | 175.08 | 9.00 | |
Males (Residual standard error: 2.688 on 68 degrees of freedom) | L∞ | 75.03 | 68.49 | 87.23 | 4.56 |
k | 0.0077 | 0.0054 | 0.0103 | 0.0013 | |
I | 132.00 | 123.64 | 147.79 | 5.24 |
Comparison | Compared Parameters of Growth Curves | ||
---|---|---|---|
L∞ | k | I | |
Females vs. Males | t = 0.7877 df = 3.6094 p-value = 0.4794 | t = −0.4781 df = 3.9573 p-value = 0.6578 | t = 1.0343 df = 3.0716 p-value = 0.3755 |
All vs. Males | t = −0.2965 df = 2.8298 p-value = 0.7872 | t = 0.4055 df = 2.7924 p-value = 0.7142 | t = 0.7052 df = 3.1690 p-value = 0.5290 |
Females vs. All | t = 1.1380 df = 2.4335 p-value = 0.3547 | t = −1.0791 df = 2.9559 p-value = 0.3606 | t = 0.7055 df = 2.3717 p-value = 0.5434 |
Species | Number of Individuals | SL Range (mm) | Central Zone (CZ) or Larval Zone (LZ) | Middle Zone (MZ) or Post-Larval Zone (PLZ) | Maximum Number of Increments in the Whole Otolith | References |
---|---|---|---|---|---|---|
Benthosemafibulatum | 47 | 15–80 | 30.8 *–38.4 * | - | ~410 | [13] |
Benthosemapterotum | 98 | 14–48 | 28.0 *–31.6 * | - | ~330 | [13] |
Benthosema pterotum | 139 | 2.6–30.0 | 11–26 | 4–11 | - | [66] |
Benthosema pterotum | 35 | 16.60–39.49 | 22–32 | 8–22 | 315 | [11] |
Benthosema suborbitale | 178 | 11–33 | 30–50 | 13–34 | 325 | [14] |
Ceratoscopelus warmingii | 30 | 5.0–80.7 | 20–35 | 20–65 | 416 | [9] |
Diaphus diademophilus | 2 | 36–40 | 29.3 * | - | 421 | [13] |
Diaphus dumerili | 210 | 12–63 | 20–40 | - | 362 | [14] |
Diaphus kapalae | 95 | 11–15 | 31–48 | 10–12 | 77 | [16] |
Electrona antarctica | 117 | 40–103 | 27–48 | 38–60 | 1355 | [17] |
Lampanyctus sp. | 7 | 17–67 | 26.0 * | - | 250 | [13] |
Lepidophanes guentheri | 280 | 14–65 | 20–34 | 15–40 | 439 | [14] |
Myctophum asperum | 52 | 58–82 | 30.4 * | 10.3 * | 440 | [12] |
Myctophum nitidulum | 45 | 30–79 | 33–43 | 20–35 | - | [36] |
Myctophum punctatum | 176 | 20.3–73.7 | 32–48 | 30–56 | 384 | Present paper |
Myctophum spinosum | 15 | 67–81 | 34.0* | - | 302 | [13] |
Notoscopelus resplendens | 20 | - | 35 * | 23 * | - | [58] |
Symbolophorus californiensis | 93 | 23.0–107.3 | 30–64 | 23–61 | 541 | [9] |
Symbolophorusevermanni | 16 | 36–86 | 36.3 * | - | 249 | [13] |
Tarletonbeania crenularis | 102 | 4.6–78.0 | 51–102 | 80–139 | 504 | [10] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longo, F.; Malara, D.; Stipa, M.G.; Consoli, P.; Romeo, T.; Sanfilippo, M.; Abbate, F.; Andaloro, F.; Battaglia, P. Age, Growth and Otolith Microstructure of the Spotted Lanternfish Myctophum punctatum Rafinesque 1810. J. Mar. Sci. Eng. 2021, 9, 801. https://doi.org/10.3390/jmse9080801
Longo F, Malara D, Stipa MG, Consoli P, Romeo T, Sanfilippo M, Abbate F, Andaloro F, Battaglia P. Age, Growth and Otolith Microstructure of the Spotted Lanternfish Myctophum punctatum Rafinesque 1810. Journal of Marine Science and Engineering. 2021; 9(8):801. https://doi.org/10.3390/jmse9080801
Chicago/Turabian StyleLongo, Francesco, Danilo Malara, Maria Giulia Stipa, Pierpaolo Consoli, Teresa Romeo, Marilena Sanfilippo, Francesco Abbate, Franco Andaloro, and Pietro Battaglia. 2021. "Age, Growth and Otolith Microstructure of the Spotted Lanternfish Myctophum punctatum Rafinesque 1810" Journal of Marine Science and Engineering 9, no. 8: 801. https://doi.org/10.3390/jmse9080801
APA StyleLongo, F., Malara, D., Stipa, M. G., Consoli, P., Romeo, T., Sanfilippo, M., Abbate, F., Andaloro, F., & Battaglia, P. (2021). Age, Growth and Otolith Microstructure of the Spotted Lanternfish Myctophum punctatum Rafinesque 1810. Journal of Marine Science and Engineering, 9(8), 801. https://doi.org/10.3390/jmse9080801