Seafloor Hydrothermal Activity around a Large Non-Transform Discontinuity along Ultraslow-Spreading Southwest Indian Ridge (48.1–48.7° E)
Abstract
:1. Introduction
2. Geological Setting
3. Data and Methods
4. Results
4.1. Water Column Anomaly
4.2. Category and Reliability of Hydrothermal Anomaly Sites
4.2.1. Suspected Sites
4.2.2. Inferred Sites
5. Discussion
5.1. Geological Processes Contributing to Formation of Hydrothemal Activities
5.1.1. Hydrothermal Activity on Western End of Segment 30
5.1.2. Hydrothermal Activity on the Western NTD
5.1.3. Hydrothermal Activity on the Eastern NTD
5.2. Hydrothermal Vent Frequency (Fs)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, E.T.; German, C.R. On the global distribution of hydrothermal vent fields. Mid-Ocean Ridges: Hydrothermal Interactions between the Lithosphere and Oceans. Geophys. Monogr. Ser. 2004, 148, 245–266. [Google Scholar]
- Hannington, M.; Jamieson, J.; Monecke, T.; Petersen, S.; Beaulieu, S. The abundance of seafloor massive sulfide deposits. Geology 2011, 39, 1155–1158. [Google Scholar] [CrossRef]
- Baker, E.T.; Resing, J.A.; Haymon, R.M.; Tunnicliffe, V.; Lavelle, J.W.; Martinez, F.; Ferrini, V.; Walker, S.L.; Nakamura, K. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations. Earth Planet. Sci. Lett. 2016, 449, 186–196. [Google Scholar] [CrossRef]
- German, C.R.; Petersen, S.; Hannington, M.D. Hydrothermal exploration of mid-ocean ridges: Where might the largest sul-fide deposits be forming? Chem. Geol. 2016, 420, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Baker, E.T.; Chen, Y.J.; Morgan, J. The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges. Earth Planet. Sci. Lett. 1996, 142, 137–145. [Google Scholar] [CrossRef]
- Baker, E. Exploring the ocean for hydrothermal venting: New techniques, new discoveries, new insights. Ore Geol. Rev. 2017, 86, 55–69. [Google Scholar] [CrossRef]
- Beaulieu, S.E.; Baker, E.T.; German, C.R. Where are the undiscovered hydrothermal vents on oceanic spreading ridges? Deep. Sea Res. Part II Top. Stud. Oceanogr. 2015, 121, 202–212. [Google Scholar] [CrossRef] [Green Version]
- German, C.; Parson, L. Distributions of hydrothermal activity along the Mid-Atlantic Ridge: Interplay of magmatic and tectonic controls. Earth Planet. Sci. Lett. 1998, 160, 327–341. [Google Scholar] [CrossRef]
- Tao, C.; Lin, J.; Guo, S.; Chen, Y.J.; Wu, G.; Han, X.; German, C.R.; Yoerger, D.R.; Zhou, N.; Li, H.; et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology 2012, 40, 47–50. [Google Scholar] [CrossRef]
- Son, J.; Pak, S.-J.; Kim, J.; Baker, E.T.; You, O.-R.; Son, S.-K.; Moon, J.-W. Tectonic and magmatic control of hydrothermal activity along the slow-spreading Central Indian Ridge, 8° S–17° S. Geochem. Geophys. Geosystems 2014, 15, 2011–2020. [Google Scholar] [CrossRef]
- Baker, E.T.; Hémond, C.; Briais, A.; Maia, M.; Scheirer, D.S.; Walker, S.L.; Wang, T.; Chen, Y.J. Correlated patterns in hydro-thermal plume distribution and apparent magmatic budget along 2500 km of the Southeast Indian Ridge. Geochem. Geophys. Geosystems 2014, 15, 3198–3211. [Google Scholar] [CrossRef] [Green Version]
- Baker, E.T. Relationships between hydrothermal activity and axial magma chamber distribution, depth, and melt content. Geochem. Geophys. Geosystems 2009, 10, 10. [Google Scholar] [CrossRef]
- German, C.R.; Baker, E.T.; Mevel, C.; Tamaki, K. Hydrothermal activity along the southwest Indian ridge. Nat. Cell Biol. 1998, 395, 490–493. [Google Scholar] [CrossRef]
- Baker, E.T.; Edmonds, H.N.; Michael, P.J.; Bach, W.; Dick, H.J.; Snow, J.E.; Walker, S.L.; Banerjee, N.R.; Langmuir, C.H. Hy-drothermal venting in magma deserts: The ultraslow-spreading Gakkel and Southwest Indian Ridges. Geochem. Geo-Phys. Geosystems 2004, 5, 1–29. [Google Scholar]
- Escartín, J.; Smith, D.K.; Cann, J.; Schouten, H.; Langmuir, C.H.; Escrig, S. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nat. Cell Biol. 2008, 455, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Bach, W.; Banerjee, N.R.; Dick, H.J.B.; Baker, E.T. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°–16° E. Geochem. Geophys. Geosystems 2002, 3, 1–14. [Google Scholar] [CrossRef]
- Li, H.; Tao, C.; Yue, X.; Baker, E.T.; Deng, X.; Zhou, J.; Wang, Y.; Zhang, G.; Chen, J.; Lü, S.; et al. Enhanced hydrothermal activity on an ultraslow-spreading supersegment with a seismically detected melting anomaly. Mar. Geol. 2020, 430, 106335. [Google Scholar] [CrossRef]
- Gràcia, E.; Charlou, J.L.; Radford-Knoery, J.; Parson, L.M. Non-transform offsets along the Mid-Atlantic Ridge south of the Azores (38° N–34° N): Ultramafic exposures and hosting of hydrothermal vents. Earth Planet. Sci. Lett. 2000, 177, 89–103. [Google Scholar] [CrossRef]
- McCaig, A.; Cliff, R.A.; Escartin, J.; Fallick, A.; MacLeod, C. Oceanic detachment faults focus very large volumes of black smoker fluids. Geology 2007, 35, 935. [Google Scholar] [CrossRef]
- Pak, S.-J.; Moon, J.-W.; Kim, J.; Chandler, M.T.; Kim, H.-S.; Son, J.; Son, S.-K.; Choi, S.K.; Baker, E.T. Widespread tectonic extension at the Central Indian Ridge between 8° S and 18° S. Gondwana Res. 2017, 45, 163–179. [Google Scholar] [CrossRef]
- Fouquet, Y.; Cambon, P.; Etoubleau, J.; Charlou, J.L.; Ondréas, H.; Barriga, F.; Cherkashov, G.; Semkova, T.; Poroshina, I.; Bohn, M.; et al. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. Large Igneous Prov. 2010, 188, 321–367. [Google Scholar] [CrossRef] [Green Version]
- Sauter, D.; Patriat, P.; Rommevaux-Jestin, C.; Cannat, M.; Briais, A.; Bergh, G.S.S.P.; Boulanger, D.; Deplus, C.; Grindlay, N.; Isezaki, N. The Southwest Indian Ridge between 49°15′ E and 57° E: Focused accretion and magma redistribution. Earth Planet. Sci. Lett. 2001, 192, 303–317. [Google Scholar] [CrossRef]
- Wang, Y.; Han, X.; Zhou, Y.; Qiu, Z.; Yu, X.; Petersen, S.; Li, H.; Yang, M.; Chen, Y.; Liu, J.; et al. The Daxi Vent Field: An active mafic-hosted hydrothermal system at a non-transform offset on the slow-spreading Carlsberg Ridge, 6°48′ N. Ore Geol. Rev. 2021, 129, 103888. [Google Scholar] [CrossRef]
- Dias, A.S.C.M.A.; Barriga, F. Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36°34′ N; 33°26′ W) at MAR. Mar. Geol. 2006, 225, 157–175. [Google Scholar] [CrossRef]
- Cherkashov, G.; Kuznetsov, V.; Kuksa, K.; Tabuns, E.; Maksimov, F.; Bel’Tenev, V. Sulfide geochronology along the north-ern equatorial Mid-Atlantic Ridge. Ore. Geol. Rev. 2017, 87, 147–154. [Google Scholar] [CrossRef]
- German, C.R.; Klinkhammer, G.P.; Rudnicki, M.D. The Rainbow hydrothermal plume, 36°15′ N., MAR. Geophys. Res. Lett. 1996, 23, 2979–2982. [Google Scholar] [CrossRef] [Green Version]
- Melchert, B.; Devey, C.; German, C.; Lackschewitz, K.; Seifert, R.; Walter, M.; Mertens, C.; Yoerger, D.; Baker, E.; Paulick, H.; et al. First evidence for high-temperature off-axis venting of deep crustal/mantle heat: The Nibelungen hydrothermal field, southern Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 2008, 275, 61–69. [Google Scholar] [CrossRef]
- Sauter, D.; Cannat, M. The ultraslow spreading Southwest Indian Ridge. Extrem. Events 2010, 188, 153–173. [Google Scholar] [CrossRef] [Green Version]
- Ding, T.; Tao, C.; Dias, A.A.; Liang, J.; Chen, J.; Wu, B.; Ma, D.; Zhang, R.; Wang, J.; Liao, S.; et al. Sulfur isotopic compositions of sulfides along the Southwest Indian Ridge: Implications for mineralization in ultramafic rocks. Miner. Depos. 2021, 56, 991–1006. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Lin, J.; Schouten, H. An ultraslow-spreading class of ocean ridge. Nat. Cell Biol. 2003, 426, 405–412. [Google Scholar] [CrossRef]
- Cannat, M.; Rommevaux Jestin, C.; Sauter, D.; Deplus, C.; Mendel, V. Formation of the axial relief at the very slow spread-ing Southwest Indian Ridge (49° to 69° E). J. Geophys. Res. Solid Earth 1999, 104, 22825–22843. [Google Scholar] [CrossRef]
- Behn, M.D.; Ito, G. Magmatic and tectonic extension at mid-ocean ridges: 1. Controls on fault characteristics. Geochem. Geophys. Geosystems 2008, 9, 9. [Google Scholar] [CrossRef]
- Liu, C.; Li, J.; Tao, C.; Fan, Q.; Song, J.; Luo, Y.; Feng, B. Variations in faulting style of the Southwest Indian Ridge (46°–53.5° E): Implications for crustal accretion process at ultraslow-spreading ridges. Tectonophysics 2020, 790, 228552. [Google Scholar] [CrossRef]
- Zhang, H. Tectonic Model and its Genetic Mechanism of Very-Low Spreading Ridges: Insight from Southwest Indian Ridge (46–52° E). Ph.D. Thesis, Peaking University, Beijing, China, 2017. (In Chinese). [Google Scholar]
- Tao, C.; Li, H.; Deng, X.; Lei, J.; Wang, Y.; Zhang, K.; Zhou, J.; Liu, W. Hydrothermal Activity on ultraslow Spreading Ridge: New hydrothermal fields found on the Southwest Indian ridge. AGU Fall Meet. Abstr. 2014, 2014, S53C–S1061C. [Google Scholar]
- Liu, C. Tectonic-Magmatic Characteristics of Southwest Indian Ridge 46~52.5° E and its Dynamic Formation Mechanism. Ph.D. Thesis, Peking University, Beijing, China, 2019. (In Chinese). [Google Scholar]
- Tao, C.; Chen, S.; Baker, E.T.; Li, H.; Liang, J.; Liao, S.; Chen, Y.J.; Deng, X.; Zhang, G.; Gu, C.; et al. Hydrothermal plume mapping as a prospecting tool for seafloor sulfide deposits: A case study at the Zouyu-1 and Zouyu-2 hydrothermal fields in the southern Mid-Atlantic Ridge. Mar. Geophys. Res. 2017, 38, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Tao, C.; German, C.R. Abundance of low-temperature axial venting at the equatorial East Pacific Rise. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2021, 167, 103426. [Google Scholar] [CrossRef]
- Yue, X.; Li, H.; Ren, J.; Tao, C.; Zhou, J.; Wang, Y.; Lü, X. Seafloor hydrothermal activity along mid-ocean ridge with strong melt supply: Study from segment 27, southwest Indian ridge. Sci. Rep. 2019, 9, 9874. [Google Scholar] [CrossRef]
- Chen, S.; Tao, C.; Li, H.; Chen, Y.; Zhou, J.; Wu, T. A data processing method for MAPR hydrothermal plume turbidity data and its application in the Precious Stone Mountain hydrothermal field. Acta Oceanol. Sin. 2014, 33, 34–43. [Google Scholar] [CrossRef]
- Goring, D.G.; Nikora, V.I. Despiking Acoustic Doppler Velocimeter Data. J. Hydraul. Eng. 2002, 128, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.L.; Baker, E.T.; Resing, J.A.; Nakamura, K.; McLain, P.D. A new tool for detecting hydrothermal plumes: An ORP Sensor for the PMEL MAPR. AGU Fall Meet. Abstr. 2007, 2007, V21D–V753D. [Google Scholar]
- Fraile-Nuez, E.; Santana-Casiano, J.M.; González-Dávila, M.; Vázquez, J.T.; Fernández-Salas, L.M.; Sánchez-Guillamón, O.; Palomino, D.; Presas-Navarro, C. Cyclic Behavior Associated with the Degassing Process at the Shallow Submarine Volcano Tagoro, Canary Islands, Spain. Geosciences 2018, 8, 457. [Google Scholar] [CrossRef] [Green Version]
- Santana-Casiano, J.M.; Nuez, E.F.; Gonzalez-Davila, M.; Baker, E.T.; Resing, J.; Walker, S.L. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island. Sci. Rep. 2016, 6, 25686. [Google Scholar] [CrossRef] [PubMed]
- González-Vega, A.; Fraile-Nuez, E.; Santana-Casiano, J.M.; González-Dávila, M.; Escánez-Pérez, J.; Gómez-Ballesteros, M.; Tello, O.; Arrieta, J.M. Significant Release of Dissolved Inorganic Nutrients from the Shallow Submarine Volcano Tagoro (Canary Islands) Based on Seven-Year Monitoring. Front. Mar. Sci. 2020, 6, 829. [Google Scholar] [CrossRef] [Green Version]
- Nuez, E.F.; Gonzalez-Davila, M.; Casiano, J.M.S.; Arístegui, J.; Alonso-González, I.J.; Hernández-León, S.; Blanco, M.J.; Rodriguez-Santana, A.; Hernández-Guerra, A.; Gelado-Caballero, M.; et al. The submarine volcano eruption at the island of El Hierro: Physical-chemical perturbation and biological response. Sci. Rep. 2012, 2, 486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haymon, R.M.; White, S.M.; Baker, E.T.; Anderson, P.G.; Macdonald, K.C.; Resing, J. High-resolution surveys along the hot spot-affected Gálapagos Spreading Center: 3. Black smoker discoveries and the implications for geological controls on hydrothermal activity. Geochem. Geophys. Geosystems 2008, 9, 9. [Google Scholar] [CrossRef]
- Baker, E.T.; German, C.R.; Elderfield, H. Hydrothermal plumes over spreading-center axes: Global distributions and geo-logical inferences. Geophys. Monogr. Am. Geophys. Union 1995, 91, 47. [Google Scholar]
- German, C.R.; Bennett, S.A.; Connelly, D.P.; Evans, A.J.; Murton, B.J.; Parson, L.M.; Prien, R.D.; Ramirez-Llodra, E.; Jakuba, M.; Shank, T.M. Hydrothermal activity on the southern Mid-Atlantic Ridge: Tectonically-and volcanically-controlled vent-ing at 4–5 S. Earth Planet. Sci. Lett. 2008, 273, 332–344. [Google Scholar] [CrossRef]
- Tao, C.; Seyfried, W.E.J.; Lowell, R.P.; Liu, Y.; Liang, J.; Guo, Z.; Ding, K.; Zhang, H.; Liu, J.; Qiu, L.; et al. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge. Nat. Commun. 2020, 11, 1300. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.; Tao, C.; Li, H.; Zhang, G.; Liang, J.; Yang, W.; Wang, Y. Surface sediment geochemistry and hydrothermal activity indicators in the Dragon Horn area on the Southwest Indian Ridge. Mar. Geol. 2018, 398, 22–34. [Google Scholar] [CrossRef]
- Baker, E.T.; Haymon, R.M.; Resing, J.A.; White, S.M.; Walker, S.L.; Macdonald, K.C.; Nakamura, K.I. High-resolution surveys along the hot spot–affected Galápagos Spreading Center: 1. Distribution of hydrothermal activity. Geochem. Geophys. Geosystems 2008, 9, 1–16. [Google Scholar] [CrossRef]
- German, C.R.; Bowen, A.; Coleman, M.; Honig, D.L.; Huber, J.; Jakuba, M.V.; Kinsey, J.C.; Kurz, M.; Leroy, S.; McDermott, J.M.; et al. Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise. Proc. Natl. Acad. Sci. USA 2010, 107, 14020–14025. [Google Scholar] [CrossRef] [Green Version]
- Schmale, O.; Walter, M.; Schneider Von Deimling, J.; Sültenfuß, J.; Walker, S.; Rehder, G.; Keir, R. Fluid and gas fluxes from the Logatchev hydrothermal vent area. Geochem. Geophys. Geosystems 2012, 13, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tao, C.; Wu, G.; Ni, J.; Zhao, H.; Su, X.; Zhou, N.; Li, J.; Chen, Y.J.; Cui, R.; Deng, X. New hydrothermal fields found along the SWIR during the Legs 5-7 of the Chinese DY115-20 Expedition. AGU Fall Meet. Abstr. 2009, 2009, S21A–S1150A. [Google Scholar]
- Chen, J.; Tao, C.; Liang, J.; Liao, S.; Dong, C.; Li, H.; Li, W.; Wang, Y.; Yue, X.; He, Y. Newly discovered hydrothermal fields along the ultraslow-spreading Southwest Indian Ridge around 63° E. Acta Oceanol. Sin. 2018, 37, 61–67. [Google Scholar] [CrossRef]
- Münch, U.; Lalou, C.; Halbach, P.; Fujimoto, H. Relict hydrothermal events along the super-slow Southwest Indian spread-ing ridge near 63° 56′ E—Mineralogy, chemistry and chronology of sulfide samples. Chem. Geol. 2001, 177, 341–349. [Google Scholar] [CrossRef]
- Liao, S.; Tao, C.; Li, H.; Barriga, F.J.; Liang, J.; Yang, W.; Yu, J.; Zhu, C. Bulk geochemistry, sulfur isotope characteristics of the Yuhuang-1 hydrothermal field on the ultraslow-spreading Southwest Indian Ridge. Ore. Geol. Rev. 2018, 96, 13–27. [Google Scholar] [CrossRef]
- Bemis, K.; Lowell, R.; Farough, A. Diffuse Flow on and Around Hydrothermal Vents at Mid-Ocean Ridges. Oceanography 2012, 25, 182–191. [Google Scholar] [CrossRef]
- Devey, C.W.; German, C.R.; Haase, K.M.; Lackschewitz, K.S.; Melchert, B.; Connelly, D.P. The Relationships Between Volcanism, Tectonism, and Hydrothermal Activity on the Southern Equatorial Mid-Atlantic Ridge. In Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges; American Geophysical Union: Washington, DC, USA, 2010; Volume 188, pp. 133–152. [Google Scholar]
- Haymon, R.M.; White, S.M. Fine-scale segmentation of volcanic/hydrothermal systems along fast-spreading ridge crests. Earth Planet. Sci. Lett. 2004, 226, 367–382. [Google Scholar] [CrossRef]
- Haymon, R.M.; Fornari, D.J.; Edwards, M.H.; Carbotte, S.; Wright, D.; Macdonald, K.C. Hydrothermal vent distribution along the East Pacific Rise crest (9 09′–54′ N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges. Earth Planet. Sci. Lett. 1991, 104, 513–534. [Google Scholar] [CrossRef] [Green Version]
- Haase, K.; Koschinsky, A.; Petersen, S.; Devey, C.; German, C.; Lackschewitz, K.; Melchert, B.; Seifert, R.; Borowski, C.; Giere, O.; et al. Diking, young volcanism and diffuse hydrothermal activity on the southern Mid-Atlantic Ridge: The Lilliput field at 9°33′ S. Mar. Geol. 2009, 266, 52–64. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Son, S.; Kim, D.; Pak, S.; Yu, O.H.; Walker, S.L.; Oh, J.; Choi, S.K.; Ra, K.; Ko, Y.; et al. Discovery of Active Hydrothermal Vent Fields Along the Central Indian Ridge, 8–12° S. Geochem. Geophys. Geosystems 2020, 21, e2020G–e9058G. [Google Scholar] [CrossRef]
- Li, B.; Shi, X.; Wang, S.; Wang, J.; Yan, Q. Mafic-hosted seafloor sulfide mineralization at the margin of a non-transform dis-continuity on the southern mid-Atlantic ridge. Mar. Georesour. Geotechnol. 2019, 37, 727–738. [Google Scholar] [CrossRef]
- Standish, J.J.; Dick, H.J.; Michael, P.J.; Melson, W.G.; O’Hearn, T. MORB generation beneath the ultraslow spreading South-west Indian Ridge (9–25 E): Major element chemistry and the importance of process versus source. Geochem. Geophys. Geosystems 2008, 9, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Standish, J.J.; Sims, K.W.W. Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge. Nat. Geosci. 2010, 3, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Buck, W.R.; Lavier, L.L.; Poliakov, A.N.B. Modes of faulting at mid-ocean ridges. Nat. Cell Biol. 2005, 434, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Lowell, R.P. Hydrothermal circulation at slow spreading ridges: Analysis of heat sources and heat transfer processes. Extrem. Events 2010, 188, 11–26. [Google Scholar] [CrossRef]
- Dick, H.J.; Natland, J.H.; Alt, J.C.; Bach, W.; Bideau, D.; Gee, J.; Haggas, S.; Hertogen, J.G.; Hirth, G.; Holm, P.M.; et al. A long in situ section of the lower ocean crust: Results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth Planet. Sci. Lett. 2000, 179, 31–51. [Google Scholar] [CrossRef] [Green Version]
- Kelemen, P.B.; Kikawa, E.; Miller, D.J.; Party, S.S. Leg 209 Summary: Processes in a 20-km-thick Conductive Boundary Layer Beneath the Mid-Atlantic Ridge, 14–16 N. In Proceedings of the Ocean Drilling Program, Scientific Results; Ocean Drilling Program: College Station, TX, USA, 2007; pp. 1–33. [Google Scholar]
- Tao, C.; Li, J. Atlas of Multidisciplinary Comprehensive Research on the Southwest Indian Ocean Polymetallic Sulfide Contract Area and Adjacent Areas; Science Press: Beijing, China, 2021; pp. 1–81. (In Chinese) [Google Scholar]
- Zhang, H.-T.; Li, J.-H.; Tao, C.-H. Discussions on the bathymetric segmentation and tectonogenesis of the oblique spreading South-west Indian Ridge. Earth Sci. Front. 2021, 28, 271. [Google Scholar]
- Han, X.; Wu, G.; Cui, R.; Qiu, Z.; Deng, X.; Wang, Y.; Dy, S.P.O.; Leg, C. Discovery of a hydrothermal sulfide deposit on the Southwest Indian Ridge at 49.2° E. AGU Fall Meet. Abstr. 2010, 2010, S21C–S1531C. [Google Scholar]
Site Name | Site Type | Seafloor Surface Description | Longitude (°E) | Latitude (°N) | Observed Plume Length (km) | Plume Rise Height (m) | NTU Anomaly (ΔNTU) | ORP Anomaly (mV) | dE/dt (mv/s) |
---|---|---|---|---|---|---|---|---|---|
NL03 | Inferred low-temperature diffused site | Fragments of pillow lavas, consolidated carbonate sediments | 48.55 | −38.04 | - | - | - | −2.91 | −0.14 |
48.54 | −38.04 | - | - | - | −6.58 | −0.15 | |||
NL04-B | Suspected low-temperature diffused site | Pelagic sediments | 48.34 | −38.08 | - | - | - | −5.37 | −0.32 |
EL01 | Suspected low-temperature diffused site | Pillow lavas | 48.61 | −38.08 | - | - | - | −5.36 | −0.18 |
WL02 | Suspected low-temperature diffused site | Pelagic sediments | 48.36 | −38.13 | 4.3 | 0–60 | 0.01–0.04 | - | - |
WL03 | Inferred high-temperature focused site | Breccia or debris | 48.30 | −38.19 | 1.8 | >300 | 0.01–0.07 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Tao, C.; Wang, Y.; Chen, S.; Liang, J.; Liao, S.; Ding, T. Seafloor Hydrothermal Activity around a Large Non-Transform Discontinuity along Ultraslow-Spreading Southwest Indian Ridge (48.1–48.7° E). J. Mar. Sci. Eng. 2021, 9, 825. https://doi.org/10.3390/jmse9080825
Chen D, Tao C, Wang Y, Chen S, Liang J, Liao S, Ding T. Seafloor Hydrothermal Activity around a Large Non-Transform Discontinuity along Ultraslow-Spreading Southwest Indian Ridge (48.1–48.7° E). Journal of Marine Science and Engineering. 2021; 9(8):825. https://doi.org/10.3390/jmse9080825
Chicago/Turabian StyleChen, Dong, Chunhui Tao, Yuan Wang, Sheng Chen, Jin Liang, Shili Liao, and Teng Ding. 2021. "Seafloor Hydrothermal Activity around a Large Non-Transform Discontinuity along Ultraslow-Spreading Southwest Indian Ridge (48.1–48.7° E)" Journal of Marine Science and Engineering 9, no. 8: 825. https://doi.org/10.3390/jmse9080825
APA StyleChen, D., Tao, C., Wang, Y., Chen, S., Liang, J., Liao, S., & Ding, T. (2021). Seafloor Hydrothermal Activity around a Large Non-Transform Discontinuity along Ultraslow-Spreading Southwest Indian Ridge (48.1–48.7° E). Journal of Marine Science and Engineering, 9(8), 825. https://doi.org/10.3390/jmse9080825