Surface Alteration of Borosilicate and Phosphate Nuclear Waste Glasses by Hydration and Irradiation
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- Heating and melting of the oxides mixture at a temperature of 1040 °C for 2 h;
- (2)
- Cooling of the melt to 1010 °C and fast quenching on a plate made of stainless steel with a cast iron bottom;
- (3)
- Cooling in air followed by annealing of the glass at a temperature of 400 °C for 3 h
3. Results
3.1. Radionuclide Leaching
3.2. Surface Alteration
3.3. Irradiated Glasses
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Marra, J.C.; Ojovan, M.I. Vitrification of Radioactive Wastes. Glass Int. 2014, 37, 19–21. [Google Scholar]
- Gin, S.; Jollivet, P.; Tribet, M.; Peuget, S.; Schuller, S. Radionuclides containment in nuclear glasses: An overview. Radiochim. Acta 2017, 105, 927–959. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Lee, W.E.; Kalmykov, S.N. An Introduction to Nuclear Waste Immobilisation, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2019; p. 497. [Google Scholar]
- Jantzen, C.M.; Ojovan, M.I. On selection of matrix (wasteform) material for higher activity nuclear waste immobilization (Review). Russ. J. Inorg. Chem. 2019, 64, 1611–1624. [Google Scholar] [CrossRef]
- Weber, W.J.; Ewing, R.C.; Angel, C.A.; Arnold, G.W.; Cormack, A.N.; Delaye, J.M.; Griscom, D.L.; Hobbs, L.W.; Navrotsky, A.; Price, D.L.; et al. Radiation effects in glass used for immobilization of high-level waste and plutonium disposition. J. Mater. Res. 1997, 12, 1946–1978. [Google Scholar] [CrossRef] [Green Version]
- Lemmens, K.; Van Iseghem, P. The Effect of Gamma Radiation on the Dissolution of High-Level Waste Glass in Boom Clay. Mater. Res. Soc. Symp. Proc. 2001, 663, 175–182. [Google Scholar] [CrossRef]
- Van Iseghem, P.; Valcke, E.; Lodding, A. In situ testing of the chemical durability of vitrified high-level waste in a Boom Clay formation in Belgium: Discussion of recent data and concept of a new test. J. Nucl. Mater. 2001, 298, 86–94. [Google Scholar] [CrossRef]
- Gin, S.; Abdelouas, A.; Criscenti, L.; Ebert, W.; Ferrand, K.; Geisler, T.; Harrison, M.; Inagaki, Y.; Mitsui, S.; Mueller, K.; et al. An international initiative on long-term behavior of high-level nuclear waste glass. Mater. Today 2013, 16, 243–248. [Google Scholar] [CrossRef]
- Vienna, J.; Ryan, J.; Gin, S.; Inagaki, Y. Current understanding and remaining challenges in modeling long-term degradation of borosilicate nuclear waste glass. Int. J. Appl. Glass Sci. 2013, 4, 283–294. [Google Scholar] [CrossRef]
- Gin, S. Open scientific questions about nuclear glass corrosion. Procedia Mater. Sci. 2014, 7, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Weber, W.J. Radiation and Thermal Ageing of Nuclear Waste Glass. Procedia Mater. Sci. 2014, 7, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Peuget, S.; Delaye, J.-M.; Jégou, C. Specific outcomes of the research on the radiation stability of the French nuclear glass towards alpha decay accumulation. J. Nucl. Mater. 2014, 444, 76–91. [Google Scholar] [CrossRef]
- Poluektov, P.P.; Schmidt, O.V.; Kascheev, V.A.; Ojovan, M.I. Modelling aqueous corrosion of nuclear waste phosphate glass, J. Nucl. Mater. 2017, 484, 357–366. [Google Scholar] [CrossRef]
- Frankel, G.S.; Vienna, J.D.; Lian, J.; Scully, J.R.; Gin, S.; Ryan, J.V.; Wang, J.; Kim, S.H.; Windl, W.; Du, J. A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals. NPJ Mater. Degrad. 2018, 15, 1–17. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Lee, W.E.; Barinov, A.S.; Startceva, I.V.; Bacon, D.H.; McGrail, B.P.; Vienna, J.D. Corrosion of low level vitrified radioactive waste in a loamy soil. Glass Technol. Eur. J. Glass Sci. Technol. A 2006, 47, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Jantzen, C.M.; Kaplan, D.I.; Bibler, N.E.; Peeler, D.K.; Plodinec, M.J. Performance of a buried radioactive high level waste (HLW) glass after 24 years. J. Nucl. Mater. 2008, 378, 244–256. [Google Scholar] [CrossRef]
- Vlasova, N.V.; Remizov, M.B.; Kozlov, P.V.; Belanova, E.A. Investigation of Chemical Stability of Aluminum-Phosphate Glasses Simulating Solidified HLW to be Returned to Foreign Contractors. Radiat. Saf. Issues 2017, 3, 32–37. (In Russian) [Google Scholar]
- Medvedev, G.M.; Remizov, M.B.; Dunkov, S.A. Investigation of the properties of phosphate and borophosphate glass. Radiat. Saf. Issues 2004, 2, 15–23. (In Russian) [Google Scholar]
- Zubekhina, B.Y.; Shiryaev, A.A.; Burakov, B.E.; Vlasova, I.E.; Averin, A.A.; Yapaskurt, V.O.; Petrov, V.G. Chemical alteration of 238Pu-loaded borosilicate glass under saturated leaching conditions. Radiochim. Acta 2020, 108, 19–27. [Google Scholar] [CrossRef]
- American Society for Testing and Materials. ASTM C 1220-98. Standard Test. Method for Static Leaching of Monolithic Waste Forms for Disposal of Radioactive Waste; ASTM International: West Conshohocken, PA, USA, 2004; p. 16. [Google Scholar]
- Vashman, A.A.; Demine, A.V.; Krylova, N.V.; Kushnikov, V.V.; Matyunin, Y.I.; Poluektov, P.P.; Polyakov, A.S.; Teterin, E.G. Phosphate Glasses with Radioactive Waste; CNIIatominform: Moscow, Russia, 1997; p. 172. [Google Scholar]
- Ojovan, M.I. On alteration rate renewal stage of nuclear waste glass corrosion. MRS Adv. 2020, 5, 111–120. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Burakov, B.E.; Lee, W.E. Radiation-induced Microcrystal Shape Change as a Mechanism of Wasteform Degradation. J. Nucl. Mater. 2018, 501, 162–171. [Google Scholar] [CrossRef]
- Weber, W.J.; Turcotte, R.P.; Bunnell, L.R.; Roberts, F.P.; Westsik, J.H. Ceramics in Nuclear Waste Management; Chikalla, T.D., Mendel, J.E., Eds.; CONF-790420; National Technical Information Service: Springfield, VA, USA, 1979; p. 294.
- Burakov, B.E.; Ojovan, M.I.; Lee, W.E. Crystalline Materials for Actinide Immobilisation; Imperial College Press: London, UK, 2010. [Google Scholar]
Oxides | B-Si Non-Radioactive Glass «B-Si» | B-Si Glass Doped with 238Pu «B-Si_238» | Na-Al-P Non-Radioactive Glass «Na-Al-P» | Na-Al-P Glass Doped with 238Pu «Na-Al-P_238» | 134,137Cs-Bearing B-Si-Glass [15] | |
---|---|---|---|---|---|---|
B2O3 | 21.13 | 21.20 | 5.0 | 5.0 | 4.9 | 7.5 |
SiO2 | 47.71 | 47.86 | - | - | 48.2 | |
Na2O | 14.52 | 14.60 | 22.5 | 22.6 | 22.4 | 16.1 |
P2O5 | - | - | 51.5 | 51.3 | 51.2 | |
Al2O3 | 6.95 | 6.84 | 14.0 | 14.1 | 13.9 | 2.5 |
CaO | 5.84 | 5.87 | - | 15.5 | ||
SrO | - | - | 1.3 | 1.3 | 1.3 | - |
BaO | - | - | 2.2 | 2.2 | 2.2 | - |
Cs2O | - | - | 0.7 | 0.7 | 0.7 | - |
Fe2O3 | - | - | - | - | 1.7 | |
NaCl + Na2SO4 | - | - | - | - | 2.3 | |
MoO3 | - | 0.3 | 0.3 | 0.3 | - | |
Eu2O3 | 3.84 | 3.02 | - | - | - | |
Nd2O3 | - | - | 1.0 | 1.0 | 1.0 | - |
La2O3 | - | - | 1.5 | 1.5 | 1.5 | - |
137Cs | - | - | - | - | 3.73 kBq/g | |
PuO2 (all isotopes) | - | 0.61 | - | 0.21 | 0.58 | - |
238Pu | - | 0.45 | - | 0.15 | 0.43 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubekhina, B.Y.; Burakov, B.E.; Ojovan, M.I. Surface Alteration of Borosilicate and Phosphate Nuclear Waste Glasses by Hydration and Irradiation. Challenges 2020, 11, 14. https://doi.org/10.3390/challe11020014
Zubekhina BY, Burakov BE, Ojovan MI. Surface Alteration of Borosilicate and Phosphate Nuclear Waste Glasses by Hydration and Irradiation. Challenges. 2020; 11(2):14. https://doi.org/10.3390/challe11020014
Chicago/Turabian StyleZubekhina, Bella Y., Boris E. Burakov, and Michael I. Ojovan. 2020. "Surface Alteration of Borosilicate and Phosphate Nuclear Waste Glasses by Hydration and Irradiation" Challenges 11, no. 2: 14. https://doi.org/10.3390/challe11020014
APA StyleZubekhina, B. Y., Burakov, B. E., & Ojovan, M. I. (2020). Surface Alteration of Borosilicate and Phosphate Nuclear Waste Glasses by Hydration and Irradiation. Challenges, 11(2), 14. https://doi.org/10.3390/challe11020014