SARS-CoV-2 in Soil: A Microbial Perspective
Abstract
:1. Introduction
2. SARS-CoV-2: A New Challenge for Soil Ecosystems
3. SARS-CoV-2 Localizations and Effects on Soil Microbial Life
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rimoldi, S.G.; Stefani, F.; Gigantiello, A.; Polesello, S.; Comandatore, F.; Mileto, D.; Maresca, M.; Longobardi, C.; Mancon, A.; Romeri, F. Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci. Total Environ. 2020, 744, 140911. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, X.; Yang, Y.; Huang, X.; Jiang, J.; Li, M.; Ling, H.; Li, J.; Liu, Y.; Li, G. SARS-CoV-2 spillover into hospital outdoor environments. J. Hazard. Mater. Lett. 2021, 2, 100027. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Bianco, F.; Suresh, S.; Tripathi, V.; Núñez-Delgado, A.; Race, M. SARS-CoV-2 and other viruses in soil: An environmental outlook. Environ. Res. 2021, 198, 111297. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yang, Y.; Lu, Y.; Zhang, D.; Liu, Y.; Cui, X.; Yang, L.; Liu, R.; Liu, J.; Li, G. Natural host–environmental media–human: A new potential pathway of COVID-19 outbreak. Engineering 2020, 6, 1085–1098. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Menon, N.G.; Mohapatra, G.; Pisharody, L.; Pattnaik, A.; Menon, N.G.; Bhukya, P.L.; Srivastava, M.; Singh, M.; Barman, M.K. The novel SARS-CoV-2 pandemic: Possible environmental transmission, detection, persistence and fate during wastewater and water treatment. Sci. Total Environ. 2021, 765, 142746. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, R.A.; Buchy, P. Contaminated soil and transmission of influenza virus (H5N1). Emerg. Infect. Dis. 2012, 18, 1530. [Google Scholar] [CrossRef] [Green Version]
- Hirose, R.; Itoh, Y.; Ikegaya, H.; Miyazaki, H.; Watanabe, N.; Yoshida, T.; Bandou, R.; Daidoji, T.; Nakaya, T. Differences in environmental stability among SARS-CoV-2 variants of concern: Both Omicron BA. 1 and BA. 2 have higher stability. Clin. Microbiol. Infect. 2022. [Google Scholar] [CrossRef]
- Iyer, M.; Tiwari, S.; Renu, K.; Pasha, M.Y.; Pandit, S.; Singh, B.; Raj, N.; Saikrishna, K.; Kwak, H.J.; Balasubramanian, V. Environmental Survival of SARS-CoV-2–A solid waste perspective. Environ. Res. 2021, 197, 111015. [Google Scholar] [CrossRef]
- Núñez-Delgado, A. SARS-CoV-2 in soils. Environ. Res. 2020, 190, 110045. [Google Scholar] [CrossRef]
- Núñez-Delgado, A. What do we know about the SARS-CoV-2 coronavirus in the environment? Sci. Total Environ. 2020, 727, 138647. [Google Scholar] [CrossRef]
- Farkas, K.; Pellett, C.; Alex-Sanders, N.; Bridgman, M.T.; Corbishley, A.; Grimsley, J.M.; Kasprzyk-Hordern, B.; Kevill, J.L.; Pântea, I.; Richardson-O’Neill, I.S.; et al. Comparative assessment of filtration-and precipitation-based methods for the concentration of SARS-CoV-2 and other viruses from wastewater. Microbiol. Spectr. 2022, 10, e01102-22. [Google Scholar] [CrossRef]
- Kevill, J.L.; Lambert-Slosarska, K.; Pellett, C.; Woodhall, N.; Pântea, I.; Alex-Sanders, N.; Jones, D.L. Assessment of two types of passive sampler for the efficient recovery of SARS-CoV-2 and other viruses from wastewater. J. Sci. Total Environ. 2022, 838, 156580. [Google Scholar] [CrossRef] [PubMed]
- Kuzyakov, Y.; Mason-Jones, K. Viruses in soil: Nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol. Biochem. 2018, 127, 305–317. [Google Scholar] [CrossRef]
- Graham, R.L.; Baric, R.S. Recombination, reservoirs, and the modular spike: Mechanisms of coronavirus cross-species transmission. J. Virol. 2010, 84, 3134–3146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F. Receptor recognition and cross-species infections of SARS coronavirus. Antivir. Res. 2013, 100, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Breitbart, M.; Lee, W.H.; Run, J.-Q.; Wei, C.L.; Soh, S.W.L.; Hibberd, M.L.; Liu, E.T.; Rohwer, F.; Ruan, Y. RNA viral community in human feces: Prevalence of plant pathogenic viruses. PLoS Biol. 2006, 4, e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiwaji, M.; Matcher, G.F.; de Bruyn, M.-M.; Awando, J.A.; Moodley, H.; Waterworth, D.; Jarvie, R.A.; Dorrington, R.A. Providence virus: An animal virus that replicates in plants or a plant virus that infects and replicates in animal cells? PLoS ONE 2019, 14, e0217494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balique, F.; Lecoq, H.; Raoult, D.; Colson, P. Can plant viruses cross the kingdom border and be pathogenic to humans? Viruses 2015, 7, 2074–2098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bousbia, S.; Papazian, L.; La Scola, B.; Raoult, D. Detection of plant DNA in the bronchoalveolar lavage of patients with ventilator-associated pneumonia. PLoS ONE 2010, 5, e11298. [Google Scholar] [CrossRef] [Green Version]
- Colson, P.; Richet, H.; Desnues, C.; Balique, F.; Moal, V.; Grob, J.-J.; Berbis, P.; Lecoq, H.; Harlé, J.-R.; Berland, Y. Pepper mild mottle virus, a plant virus associated with specific immune responses, fever, abdominal pains, and pruritus in humans. PLoS ONE 2010, 5, e10041. [Google Scholar] [CrossRef]
- Kim, J.S.; Yoon, S.J.; Park, Y.J.; Kim, S.Y.; Ryu, C.M. Crossing the kingdom border: Human diseases caused by plant pathogens. Environ. Microbiol. 2020, 22, 2485–2495. [Google Scholar] [CrossRef]
- Audino, T.; Grattarola, C.; Centelleghe, C.; Peletto, S.; Giorda, F.; Florio, C.L.; Caramelli, M.; Bozzetta, E.; Mazzariol, S.; Di Guardo, G. SARS-CoV-2, a threat to marine mammals? A study from Italian seawaters. Animals 2021, 11, 1663. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Aris, P.; Farookhi, H.; Xia, X. Predicting mammalian species at risk of being infected by SARS-CoV-2 from an ACE2 perspective. Sci. Rep. 2021, 11, 1702. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Nomura, N.; Suzuki, S. Biofilms: Hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol. Ecol. 2020, 96, fiaa031. [Google Scholar] [CrossRef]
- Liu, H.; Tan, S.; Xu, J.; Guo, W.; Xia, X.; Yan Cheung, S. Interactive regulations by viruses and dissolved organic matter on the bacterial community. Limnol. Oceanogr. 2017, 62, S364–S380. [Google Scholar] [CrossRef]
- Pratama, A.A.; Van Elsas, J.D. The Viruses in Soil—Potential Roles, Activities, and Impacts. In Modern Soil Microbiology; CRC Press: Boca Raton, FL, USA, 2019; pp. 91–104. [Google Scholar]
- Bixby, R.L.; O’Brien, D.J. Influence of fulvic acid on bacteriophage adsorption and complexation in soil. Appl. Environ. Microbiol. 1979, 38, 840–845. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M.; Jia, Z.-J.; Nakayama, N.; Asakawa, S. Ecology of viruses in soils: Past, present and future perspectives. Soil Sci. Plant Nutr. 2008, 54, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Proctor, L.; Fuhrman, J. Roles of viral infection in organic particle flux. Mar. Ecol. Prog. Ser. 1991, 69, 133–142. [Google Scholar] [CrossRef]
- Adler, P.B.; HilleRisLambers, J.; Levine, J.M. A niche for neutrality. Ecol. Lett. 2007, 10, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, W.; Bertsch, P.M.; Bibby, K.; Haramoto, E.; Hewitt, J.; Huygens, F.; Gyawali, P.; Korajkic, A.; Riddell, S.; Sherchan, S.P. Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology. Environ. Res. 2020, 191, 110092. [Google Scholar] [CrossRef] [PubMed]
- Bivins, A.; Greaves, J.; Fischer, R.; Yinda, K.C.; Ahmed, W.; Kitajima, M.; Munster, V.J.; Bibby, K. Persistence of SARS-CoV-2 in water and wastewater. Environ. Sci. Technol. Lett. 2020, 7, 937–942. [Google Scholar] [CrossRef]
- Franklin, A.B.; Bevins, S.N. Spillover of SARS-CoV-2 into novel wild hosts in North America: A conceptual model for perpetuation of the pathogen. Sci. Total Environ. 2020, 733, 139358. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, S.; Xu, J.; Khan, S.; Nadir, S.; Kuzyakov, Y. SARS-CoV-2 in Soil: A Microbial Perspective. Challenges 2022, 13, 52. https://doi.org/10.3390/challe13020052
Iqbal S, Xu J, Khan S, Nadir S, Kuzyakov Y. SARS-CoV-2 in Soil: A Microbial Perspective. Challenges. 2022; 13(2):52. https://doi.org/10.3390/challe13020052
Chicago/Turabian StyleIqbal, Shahid, Jianchu Xu, Sehroon Khan, Sadia Nadir, and Yakov Kuzyakov. 2022. "SARS-CoV-2 in Soil: A Microbial Perspective" Challenges 13, no. 2: 52. https://doi.org/10.3390/challe13020052
APA StyleIqbal, S., Xu, J., Khan, S., Nadir, S., & Kuzyakov, Y. (2022). SARS-CoV-2 in Soil: A Microbial Perspective. Challenges, 13(2), 52. https://doi.org/10.3390/challe13020052