Application of Blockchain Technology in Dynamic Resource Management of Next Generation Networks
Abstract
:1. Introduction
2. Relevant Work
DLT-Enabled Resource Management in NGN
3. System Architecture and Use Case Scenario
- Blockchain nodes: The blockchain nodes form the blockchain network and hold the digital ledger that contains all the history of transactions and information regarding the NPs. Each node has, also, access to the wallet of the NP that contains the keys of the node which are needed to access the Blockchain network and make the required calls to the SCs deployed there. The blockchain network is responsible for the proper functionality of the resource management mechanism, that includes the trade of resources and their billing. Each NP supports one node as it is presented in Figure 1.
- Oracles: A blockchain oracle [46,47] is an entity that connects a blockchain with off-chain data. Oracles are known as blockchain middleware and enter every data input through an external transaction. To maintain the deterministic validation of blocks, normally smart contracts can only access data previously stored on the blockchain and cannot use external data. The use of oracles makes communication possible from the external world to the blockchain, for example by recording external data on the blockchain in transactions. In the presented solution, oracles are used for the interaction of the Blockchain network with the MANO components and the VNF network resource orchestration.
- MANOs: These components are responsible for performing the necessary actions for the implementation of the resource management. The resource management mechanism is implemented inside the blockchain using the SC and the MANO components execute the decisions derived by the blockchain network. Additionally, this component is responsible for monitoring the resource utilization of the virtual infrastructure and hosting images of virtual network functions (VNFs). The MANOs interact each other to reserve resources and implement the necessary network functions specified by the blockchain network which acts as a decentralized brokering system.
- VIMs: Virtual Infrastructure Manager (VIM) is responsible for managing the virtual infrastructures, usually cloud environments, and is hosted inside the MANO component. Through VIM, MANOs can manage these resources by launching, modifying, and terminating VMs that support various VNFs.
- Clouds: Cloud infrastructures offer computational resources to support various VNFs. These infrastructures are geographically staggered in order to cover regions and cities, trying to provide services near to customer.
- VMs: The VMs are used for hosting the VNFs and are consisted of virtual resources such as VCPUs, RAM, storage, and network links (bandwidth). The resources used by the VM are based on the characteristics of the VNF.
- (a)
- addNetworkProvider: This function is triggered each time a new NP joins the network. For every NP, the information kept in the BC includes: the name of the NP, the types and number of its offered resources, e.g., bandwidth, processing, memory, the cost of the resources per unit, other attributes of the resources like the region they cover and (most importantly) the Service Level Agreement (SLA) that the NP can support. A unique blockchain account address is also associated with each NP and is used as a wallet for interacting with other NPs and entities of the blockchain. This function performs a transaction and inserts the result in the ledger which is kept in the blockchain.
- (b)
- GetBestMatch: When an NP needs additional resources to satisfy the needs of its users, it searches the BC network in order to find another NP that can offer these resources. The GetBestMatch function is triggered in this case. It takes as an input the type, number and attributes of the needed resources and searches to find the NP that can fulfil them. In case more than one NPs can satisfy the request, the one incurring the lower cost is selected. It is worth stressing here that (a) our focus is not on the optimization algorithm but on the evaluation of the feasibility of such a solution offering adequate performance, and (b) the “cost” that we assume in the proposed solution can be the actual financial cost or any other metric, whose value is designed to be minimized. It should be noted that this function reads data from the blockchain and does not write any information in the ledger.
- (c)
- ResourceReservationTransaction: Once the GetBestMatch function ends up with the id of the NP that offers the required resources at the lowest price, the ResourceReservationTransaction is triggered so that the decision and relevant payment are enacted. The NP that has requested resources pays the amount specified by the cost field of the NP who offers the resources and the resources of the provider that purchased the resources increase. The balance of the NP that has offered resources increases and the transaction is completed. This transaction function writes data into the blockchain.
4. Evaluation Results
- -
- Operating system: Ubuntu 16.04 LTS server,
- -
- 4 CPU cores,
- -
- 8 GB RAM,
- -
- 30 GB storage, and
- -
- public IP addresses.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- OSM MANO. Available online: https://osm.etsi.org/ (accessed on 14 December 2019).
- ONAP. Available online: https://www.onap.org/ (accessed on 9 January 2020).
- SONATA. Available online: https://www.sonata-nfv.eu/ (accessed on 9 January 2020).
- Tavares, B.; Correia, F.F.; Restivo, A. A survey on blockchain technologies and research. J. Inf. 2019, 14, 118–128. [Google Scholar]
- De Aguiar, E.J.; Faiçal, B.S.; Krishnamachari, B.; Ueyama, J. A Survey of Blockchain-Based Strategies for Healthcare. ACM Comput. Surv. 2020, 53, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Monrat, A.A.; Schelen, O.; Andersson, K. A Survey of Blockchain From the Perspectives of Applications, Challenges, and Opportunities. IEEE Access 2019, 7, 117134–117151. [Google Scholar] [CrossRef]
- Xie, J.; Tang, H.; Huang, T.; Yu, F.R.; Xie, R.; Liu, J.; Liu, Y. A Survey of Blockchain Technology Applied to Smart Cities: Research Issues and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 2794–2830. [Google Scholar] [CrossRef]
- Wang, X.; Zha, X.; Ni, W.; Liu, R.P.; Guo, Y.J.; Niu, X.; Zheng, K. Survey on blockchain for Internet of Things. Comput. Commun. 2019, 136, 10–29. [Google Scholar] [CrossRef]
- Xevgenis, M.; Dimitrios, G.; Patrikakis, C.Z. A Survey on the Available Blockchain Platforms and Protocols for Supply Chain Management. Available online: http://ceur-ws.org/Vol-2686/paper4.pdf (accessed on 20 November 2020).
- Perboli, G.; Musso, S.; Rosano, M. Blockchain in Logistics and Supply Chain: A Lean Approach for Designing Real-World Use Cases. IEEE Access 2018, 6, 62018–62028. [Google Scholar] [CrossRef]
- Kshetri, N. 1 Blockchain’s roles in meeting key supply chain management objectives. Int. J. Inf. Manag. 2018, 39, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Du, W. (Derek); Pan, S.L.; Leidner, D.E.; Ying, W. Affordances, experimentation and actualization of FinTech: A blockchain implementation study. J. Strat. Inf. Syst. 2019, 28, 50–65. [Google Scholar] [CrossRef]
- Fernandez-Vazquez, S.; Rosillo, R.; De La Fuente, D.; Priore, P. Blockchain in FinTech: A Mapping Study. Sustainability 2019, 11, 6366. [Google Scholar] [CrossRef] [Green Version]
- Chaer, A.; Salah, K.; Lima, C.; Ray, P.P.; Sheltami, T. Blockchain for 5G: Opportunities and Challenges. In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Tahir, M.; Habaebi, M.H.; Dabbagh, M.; Mughees, A.; Ahad, A.; Ahmed, K.I. A Review on Application of Blockchain in 5G and Beyond Networks: Taxonomy, Field-Trials, Challenges and Opportunities. IEEE Access 2020, 8, 115876–115904. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Pathirana, P.N.; Ding, M.; Seneviratne, A. Blockchain for 5G and beyond networks: A state of the art survey. J. Netw. Comput. Appl. 2020, 166, 102693. [Google Scholar] [CrossRef]
- Quorum. Available online: https://docs.goquorum.consensys.net/en/latest/ (accessed on 10 February 2020).
- Agarwal, S.; Malandrino, F.; Chiasserini, C.-F.; De, S. VNF Placement and Resource Allocation for the Support of Vertical Services in 5G Networks. IEEE/ACM Trans. Netw. 2019, 27, 433–446. [Google Scholar] [CrossRef] [Green Version]
- Taleb, T.; Afolabi, I.; Samdanis, K.; Yousaf, F.Z. On Multi-Domain Network Slicing Orchestration Architecture and Federated Resource Control. IEEE Netw. 2019, 33, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Samdanis, K.; Costa-Perez, X.; Sciancalepore, V. From network sharing to multi-tenancy: The 5G network slice broker. IEEE Commun. Mag. 2016, 54, 32–39. [Google Scholar] [CrossRef]
- Wright, C.S. Bitcoin: A Peer-to-Peer Electronic Cash System. SSRN Electron. J. 2008. [Google Scholar] [CrossRef]
- IBM Food Trust. Available online: https://www.ibm.com/blockchain/solutions/food-trust (accessed on 14 December 2019).
- TradeLens. Available online: https://www.tradelens.com/ (accessed on 14 December 2019).
- CargoX. Available online: https://cargox.io/ (accessed on 30 November 2019).
- Mettler, M. Blockchain technology in healthcare: The revolution starts here. In Proceedings of the 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), Munich, Germany, 14–16 September 2016; pp. 1–3. [Google Scholar]
- McGhin, T.; Choo, K.-K.R.; Liu, C.Z.; He, D. Blockchain in healthcare applications: Research challenges and opportunities. J. Netw. Comput. Appl. 2019, 135, 62–75. [Google Scholar] [CrossRef]
- Hussien, H.M.; Yasin, S.M.; Udzir, S.N.I.; Zaidan, A.A.; Zaidan, B. A Systematic Review for Enabling of Develop a Blockchain Technology in Healthcare Application: Taxonomy, Substantially Analysis, Motivations, Challenges, Recommendations and Future Direction. J. Med Syst. 2019, 43, 320. [Google Scholar] [CrossRef]
- Han, M.; Li, Z.; He, J. (Selena); Wu, D; Xie, Y.; Baba, A. A Novel Blockchain-based Education Records Verification Solution. In Proceedings of the 19th Annual SIG Conference on Information Technology Education, Fort Lauderdale, FL, USA, 3–6 October 2018; pp. 178–183. [Google Scholar]
- Yumna, H.; Khan, M.M.; Ikram, M.; Ilyas, S. Use of Blockchain in Education: A Systematic Literature Review. In Proceedings of the 11th Asian Conference, ACIIDS 2019, Yogyakarta, Indonesia, 8–11 April 2019; pp. 191–202. [Google Scholar]
- AlAmmary, A.; Alhazmi, S.; Almasri, M.; Gillani, S. Blockchain-Based Applications in Education: A Systematic Review. Appl. Sci. 2019, 9, 2400. [Google Scholar] [CrossRef] [Green Version]
- Kogias, D.G.; Leligou, H.C.; Xevgenis, M.; Polychronaki, M.; Katsadouros, E.; Loukas, G.; Heartfield, R.; Patrikakis, C.Z. Toward a Blockchain-Enabled Crowdsourcing Platform. IT Prof. 2019, 21, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Liu, Q.; Zhang, X.; Zhang, J.; Qi, L.; Dou, W. A Blockchain-Powered Crowdsourcing Method With Privacy Preservation in Mobile Environment. IEEE Trans. Comput. Soc. Syst. 2019, 6, 1407–1419. [Google Scholar] [CrossRef]
- IOTA. Available online: https://www.iota.org/ (accessed on 14 December 2019).
- Bencic, F.M.; Zarko, I.P. Distributed Ledger Technology: Blockchain Compared to Directed Acyclic Graph. In Proceedings of the 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, 2–6 July 2018; pp. 1569–1570. [Google Scholar]
- Ethereum. Available online: https://ethereum.org/ (accessed on 21 October 2020).
- Hyperledger Fabric. Available online: https://www.hyperledger.org/projects/fabric (accessed on 21 October 2020).
- Herbaut, N.; Negru, N. A Model for Collaborative Blockchain-Based Video Delivery Relying on Advanced Network Services Chains. IEEE Commun. Mag. 2017, 55, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Vukolić, M. The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT Replication. In Proceedings of the IFIP WG 11.4 International Workshop, iNetSec 2015, Zurich, Switzerland, 29 October 2015; pp. 112–125. [Google Scholar]
- Rebello, G.A.F.; Alvarenga, I.D.; Sanz, I.J.; Duarte, O.C.M.B. BSec-NFVO: A Blockchain-Based Security for Network Function Virtualization Orchestration. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Nour, B.; Ksentini, A.; Herbaut, N.; Frangoudis, P.A.; Moungla, H. A Blockchain-Based Network Slice Broker for 5G Services. IEEE Netw. Lett. 2019, 1, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Rebello, G.A.F.; Camilo, G.F.; Silva, L.G.C.; Guimaraes, L.C.B.; De Souza, L.A.C.; Alvarenga, I.D.; Duarte, O.C.M.B. Providing a Sliced, Secure, and Isolated Software Infrastructure of Virtual Functions Through Blockchain Technology. In Proceedings of the 2019 IEEE 20th International Conference on High Performance Switching and Routing (HPSR), Xi’an, China, 26–29 May 2019; pp. 1–6. [Google Scholar]
- Trakadas, P.; Karkazis, P.; Leligou, N.; Zahariadis, T.; Vicens, F.; Zurita, A.; Alemany, P.; Soenen, T.; Parada, C.; Bonnet, J.; et al. Comparison of Management and Orchestration Solutions for the 5G Era. J. Sens. Actuator Networks 2020, 9, 4. [Google Scholar] [CrossRef] [Green Version]
- Al-Hazmi, Y.; González, J.; Rodriguez-Archilla, P.; Álvarez, F.; Orphanoudakis, T.; Karkazis, P.; Magedanz, T. Unified representation of monitoring information across federated cloud infrastructures. In Proceedings of the 2014 26th International Teletraffic Congress (ITC), Karlskrona, Sweden, 9–11 September 2014; pp. 1–6. [Google Scholar]
- Theodore, Z.; Panagiotis, K.; Sotiris, K.; George, X. A Monitoring Framework for Heterogeneous NFV/SDN-enabled Cloud Environments. In Proceedings of the EuCNC 2016, Athens, Greece, 27–30 June 2016. [Google Scholar]
- Panagiotis, T.; Panagiotis, K.; Helen-Catherine, L.; Theodore, Z.; Andreas, P.; Wouter, T.; Thomas, S.; Steven van, R. Scalable Monitoring for Multiple Virtualized Infrastructures for 5G Services. In Proceedings of the ICN2018, Athens, Greece, 22–26 April 2018. [Google Scholar]
- Lo, S.K.; Xu, X.; Staples, M.; Yao, L. Reliability analysis for blockchain oracles. Comput. Electr. Eng. 2020, 83, 106582. [Google Scholar] [CrossRef]
- Ladleif, J.; Weber, I.; Weske, M. External Data Monitoring Using Oracles in Blockchain-Based Process Execution. In Proceedings of the Business Intelligence; Springer Science and Business Media LLC: Cham, Switzerland, 2020; pp. 67–81. [Google Scholar]
- Tessera. Available online: https://docs.tessera.consensys.net/en/stable/HowTo/Configure/Transaction-manager/ (accessed on 22 March 2020).
- Hyperledger Caliper. Available online: https://www.hyperledger.org/learn/publications/blockchain-performance-metrics# (accessed on 2 August 2020).
- Okeanos. Available online: https://okeanos.grnet.gr/home/ (accessed on 22 August 2020).
Approaches | Security | Scalability |
---|---|---|
Centralized Brokering | Low | High |
Blockchain-based Brokering | High | Low |
DLT and NGN | Blockchain/ DAG | Resource negotiation/ management | Network Slicing | Cloud environment/ Data Center | VNF management/service chains | Consensus | Permissioned / Permissionless | Use of multiple blockchains |
---|---|---|---|---|---|---|---|---|
Vukolic et al. [37] | Blockchain | Y | - | Y | Y | PBFT | Permissioned (HLF) | - |
Rebello et al. [39] | Blockchain | Y | - | Y | Y | PBFT | Permissioned (HLF) | - |
Nour et al. [40] | Blockchain | - | Y | Y | Y | PoW | Permissionless (Hashcash) | - |
Rebello et al. [41] | Blockchain | - | Y | Y | Y | PBFT | Permissioned (HLF) and Permissionless (unspecified) | Y |
Proposed Solution | Blockchain | Y | Y | Y | Y | RAFT | Permissioned | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xevgenis, M.; Kogias, D.G.; Karkazis, P.; Leligou, H.C.; Patrikakis, C. Application of Blockchain Technology in Dynamic Resource Management of Next Generation Networks. Information 2020, 11, 570. https://doi.org/10.3390/info11120570
Xevgenis M, Kogias DG, Karkazis P, Leligou HC, Patrikakis C. Application of Blockchain Technology in Dynamic Resource Management of Next Generation Networks. Information. 2020; 11(12):570. https://doi.org/10.3390/info11120570
Chicago/Turabian StyleXevgenis, Michael, Dimitrios G. Kogias, Panagiotis Karkazis, Helen C. Leligou, and Charalampos Patrikakis. 2020. "Application of Blockchain Technology in Dynamic Resource Management of Next Generation Networks" Information 11, no. 12: 570. https://doi.org/10.3390/info11120570
APA StyleXevgenis, M., Kogias, D. G., Karkazis, P., Leligou, H. C., & Patrikakis, C. (2020). Application of Blockchain Technology in Dynamic Resource Management of Next Generation Networks. Information, 11(12), 570. https://doi.org/10.3390/info11120570