Testing the “(Neo-)Darwinian” Principles against Reticulate Evolution: How Variation, Adaptation, Heredity and Fitness, Constraints and Affordances, Speciation, and Extinction Surpass Organisms and Species
Abstract
:1. Introduction
2. Reticulate Evolution
2.1. Symbiosis and Symbiogenesis
2.1.1. Symbiosis
- The nature of the symbiosis: Symbiosis is a term that indicates interaction, but it does not specify the precise nature of the interaction which can be beneficial (+), harmful (−), or neutral (0) for either or all of the interacting organisms. In this regard, van Beneden [4,32] distinguished between mutualism (+,+ for both organisms), commensalism (+,0), and parasitism (+,−). These concepts were first used in nutritional and social contexts, but they are also extendable to ecological situations. Later, Toynbee [33] added the notion of synnecrosis (−,−), and Haskell [34] (p. 46) added amensalism (−,0) and neutralism (0,0) to the spectrum of possible symbiotic interactions.
- The temporality of the symbiosis: Symbiotic associations can become established each generation anew during ontogeny, they can extend for particular and possibly repetitive or cyclic periods in time, and they can become permanent and hereditary [34,35], in which case the associating partners come to rely on one another for successful survival and possibly reproduction. Symbiosis has long been considered an ecological or developmental phenomenon only, but today eco-evo-devo schools are demonstrating how ecology and development can impact evolution, and especially hereditary symbiosis demonstrates how symbiosis can have a lasting impact on phylogeny.
- The location of the symbiont in relation to its host: In disjunctive symbiosis, organisms simply occupy the same space without necessarily engaging in physical contact. In conjunctive symbiosis, the symbiont can live on (ectosymbiosis) or inside (endosymbiosis) the host (e.g., in the lungs or the gut), or it can live inside the host’ cells (intracellular symbiosis) [36,37,38].
- The mode whereby hosts acquire symbionts: Symbiont acquisition occurs through contact (cell collisions, phagocytosis, eating, touch, birthing, respiration, etc.) and symbionts can be transmitted both horizontally (during the lifetime of individual organisms) or vertically (over generations of individuals through time) through a variety of mechanisms and processes [7,9].
2.1.2. Symbiogenesis
2.2. Lateral Gene Transfer
2.3. Infective Heredity
2.4. Hybridization
3. The “Darwinian” Principles and Reticulate Evolution
3.1. Variation
3.1.1. Symbiosis and Symbiogenesis
3.1.2. Lateral Gene Transfer
3.1.3. Infective Heredity
3.1.4. Hybridization
3.2. Successful Survival and Adaptation
3.2.1. Symbiosis and Symbiogenesis
3.2.2. Lateral Gene Transfer
3.2.3. Infective Heredity
3.2.4. Hybridization
3.3. Heredity (Reproduction, Gene Flow) and Fitness
3.3.1. Symbiosis and Symbiogenesis
Cytoplasmic incompatibility | In fruit flies (Drosophila paulistorum, D. recens, D. subquinaria, and D. melanogaster), parasitoid wasps (Nasonia giraulti), and two-spotted spider mites (Tetranychus urticae) [132], the sperm of infected males is altered in such a way that the males can only mate successfully with females infected with the same Wolbachia strain; when the infected males fertilize eggs from uninfected females or females infected with another strain, the embryos die [133,134]. |
Feminization of genetic males | In pill bugs (Armadallidium vulgare), butterflies (Eurema hecabe), and leafhoppers (Zyginidia pullula) [132], Wolbachia can make infected males develop as (pseudo)females [135]. |
Male killing | In pill bugs (Armadallidium vulgare) and butterflies (Acraea encedon and Hypolimnas bolina) [132], Wolbachia can kill infected males at larval or embryonic stage before they reach sexual maturity [136,137]. |
Parthenogenesis | In mealybug parasites (Apoanagyrus diversicornis), parasitoid wasps (Asobara japonica, Leptopilina clavipes, Muscidifurax uniraptor, Neochrysocharis formosa, and Galeopsomyia fausta), and thrips (Franklinothrips vespiformis) [132], Wolbachia alter the sexual reproductive organs and they disable male fertilization of the eggs, resulting in the unfertilized eggs developing as females [138]. |
3.3.2. Lateral Gene Transfer
3.3.3. Infective Heredity
3.3.4. Hybridization
3.4. Evolutionary Constraints and Affordances
3.4.1. Symbiosis and Symbiogenesis
“The complete isolation of these bacteria from other microbes as a result of their permanent intracellular lifestyle means a lack of horizontal gene transfer, resulting in a strict co-evolution of the symbionts with their hosts. In addition, a constant supply of metabolites from the host and a relatively stable environment relax selection pressure on the maintenance of many, mainly metabolic, genes. This has had dramatic consequences for the genome structure of the bacteriocyte endosymbionts. In general, these genomes are characterized by a strong AT bias (more than 70%), extremely reduced genome sizes of 160–800 kb, a complete stasis of genome structure, an extreme reduction in the numbers of transcriptional regulators, and recombination and DNA repair factors, and high mutation rates.”
3.4.2. Lateral Gene Transfer
3.4.3. Infective Heredity
3.4.4. Hybridization
3.5. Speciation
3.5.1. Symbiosis and Symbiogenesis
“Broad-sense symbiont-induced reproductive isolation refers to divergence in host genes that result in a reproductive barrier because of selection on the host to accommodate microorganisms. In this case, loss or alteration of the symbiont does not have an impact on the capacity to interbreed; instead, host genetic divergence and reproductive isolation evolve in response to microbial symbiosis and cause isolation regardless of whether the hosts are germfree or not. Conversely, narrow-sense symbiont-induced reproductive isolation occurs when host-microbe or microbe-microbe associations result in a reproductive barrier, namely, one that can be ameliorated or removed via elimination of the microbes. Therefore, narrow-sense isolation can be experimentally validated if it is reversible under microbe-free rearing conditions and inducible with the reintroduction of microbes. Isolation barriers that require host and microbial components underpin hologenomic speciation” [132] (p. 2).
3.5.2. Lateral Gene Transfer
3.5.3. Infective Heredity
3.5.4. Hybridization
“… the fertility of a plant is enormously affected by polyploidy. If the original plant is a fertile species, the polyploid derivative will be partially sterile, due to the formation of multivalent associations of chromosomes and their occasional irregular segregation. If, on the other hand, the diploid plant is a sterile hybrid, the polyploid produced from it is generally fully fertile. This last fact is the basis of the principle of allopolyploidy or amphidiploidy, the importance of which in the development of plant species cannot be stressed too strongly. Equally important is the well-known fact that tetraploids are not only difficult or impossible to cross with their diploid progenitors, but also produce practically sterile triploid F1 hybrids when crossed with them. This brings us to the all-important fact, now so well known that I need not cite the numerous examples of it, that by means of chromosome doubling or polyploidy a sterile hybrid can produce directly a fertile, constant species. On this fact is based the chief classification of polyploids into autopolyploid and allopolyploid types.”
“… the gaps between species no longer exist or are at least very much smaller and harder to recognize. Polyploidy, therefore, tends to break down genetic barriers and to permit exchanges of genes between genetic systems that in the diploid condition are completely isolated from each other.”
3.6. Extinction
3.6.1. Symbiosis and Symbiogenesis
3.6.2. Lateral Gene Transfer
3.6.3. Infective Heredity
3.6.4. Hybridization
“If two hybridizing species have different karyotypes, then hybrids may suffer from meiotic defects or produce gametes that are aneuploid, and thus be sterile … Polyploid hybrids are frequently sterile and are common among plants … Chromosomal inversions have also been widely implicated in causing hybrid sterility.”
4. Concluding Remarks and Future Prospects
- While most certainly indicative of evolution, the principles of variation, adaptation, heredity and fitness, constraints and affordances, speciation, and extinction are not exclusively “Darwinian”. Rather, all can occur by means of reticulate evolution. For these reasons, the phenomena should be understood as universal principles of evolution that enable a further objectification of evolutionary research, one also applicable for testing other mechanisms and processes of evolution, such as drift for example (Section 4.1).
- The principles have often been understood as “properties” or “traits” that are somehow carried by genes, organisms, or species, thereby implying that these are qualities or characteristics inherent to these entities or otherwise possessed by these entities. However, what this review demonstrates is that the principles are exherent to the entities that demonstrate them, because they result from horizontal and reticulate interactions between different units, levels, mechanisms, and processes across evolutionary hierarchies. The principles are “carried” by the interactions that exist amongst organisms belonging to different taxa, and these interactions too are diverse and changeable over time and space, because these too evolve (Section 4.2).
4.1. Universalizing the Principles
4.2. The Universal Evolutionary Principles as Exherent Common Goods Brought Forth by Interactions
4.2.1. Variation
“In formulating 21st century evolutionary principles, it is important to incorporate certain major empirical discoveries in the biological sciences: 1. All extant organisms have sophisticated molecular systems for monitoring external and internal conditions, which they use cognitively to adjust their physiologies, correct errors, and repair damage to ensure survival, growth, and reproduction. 2. All extant organisms can actively modify their read-write DNA genomes in response to ecological disruption or biological challenge. 3. Many hereditary changes result from biosphere interactions …”
4.2.2. Successful Survival and Adaptation
4.2.3. Heredity, Reproduction, Gene Flow, and Fitness
4.2.4. Evolutionary Constraints and Affordances
4.2.5. Speciation
4.2.6. Extinction
Funding
Acknowledgments
Conflicts of Interest
References
- Gontier, N. The epistemological roots of the ‘Darwinian’ principles: Changing motives in the foundation, hardening, and loosening of the Modern Synthesis. Kairos 2020, 23, 104–134. [Google Scholar]
- Lewontin, R. The units of selection. Annu. Rev. Ecol. Syst. 1970, 1, 1–18. [Google Scholar] [CrossRef]
- De Bary, A. Die Erscheinung der Symbiose: Vortrag, Gehalten auf der Versammlung Deutscher Natur-Forscher und Arzte zu Cassel; Verlag von Karl J. Trübner: Strasburg, Germany, 1879. [Google Scholar]
- Van Beneden, P.J. Les Commensaux et les Parasites Dans le Règne Animal; Biblio Sci Int: Paris, France, 1875. [Google Scholar]
- Famintsyn, A. Die Symbiose als Mittel der Synthese von Organismen. Biol. Zent. 1907, 27, 253–264. [Google Scholar]
- Kozo-Polyansky, B. Symbiogenesis: A New Principle of Evolution, Translated by V. Fet; Fet, V., Margulis, L., Eds.; Harvard University Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Margulis, L. The Symbiotic Planet; Basic Books: New York, NY, USA, 1998. [Google Scholar]
- Merezhkowsky, C. Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Zent. 1905, 25, 593–604, 689–691. [Google Scholar]
- Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 1967, 14, 255–274. [Google Scholar] [CrossRef]
- Wallin, I.E. Symbionticism and the Origin of Species; Williams and Wilkins: Baltimore, MD, USA, 1927. [Google Scholar]
- Keeling, P.J.; Palmer, J.D. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 2008, 9, 605–618. [Google Scholar] [CrossRef]
- Zhaxybayeva, O.; Doolittle, W.F. Lateral gene transfer. Curr. Biol. 2011, 21, R242–R246. [Google Scholar] [CrossRef] [Green Version]
- Lederberg, J. Infectious history. Science 2003, 288, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, J.A. Mobile Genetic Elements; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Shapiro, J.A. No genome is an island: Toward a 21st century agenda for evolution. Ann. N. Y. Acad. Sci. 2019, 1447, 21–52. [Google Scholar] [CrossRef]
- Anderson, E. Origin of the angiosperms. Nature 1934, 133, 462. [Google Scholar] [CrossRef]
- Stebbins, G.L. The significance of polyploidy in plant evolution. Am. Nat. 1940, 74, 54. [Google Scholar] [CrossRef]
- Guerrero, R.; Margulis, L.; Berlanga, M. Symbiogenesis: The holobiont as a unit of evolution. Int. Microbiol. 2013, 16, 133–143. [Google Scholar] [CrossRef]
- Margulis, L. Symbiogenesis and symbionticism. In Symbiosis as a Source of Evolutionary Innovation; Margulis, L., Fester, R., Eds.; MIT Press: Cambridge, MA, USA, 1991; pp. 1–14. [Google Scholar]
- Bapteste, E.; Huneman, P. Towards a dynamic interaction network of life to unify and expand the evolutionary theory. BMC Biol. 2018, 16, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doolittle, W.F. Phylogenetic classification and the universal tree. Science 1999, 284, 2124–2129. [Google Scholar] [CrossRef] [PubMed]
- Carrapiço, F. How symbiogenic is evolution? Theor. Biosci. 2010, 129, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Carrapiço, F. Can we understand evolution without symbiogenesis? In Reticulate Evolution; Gontier, N., Ed.; Springer: Cham, Switzerland, 2015; Volume 3, pp. 81–105. [Google Scholar] [CrossRef]
- Douglas, A.E. The Symbiotic Habit; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Gontier, N. Symbiosis, History of. In Encyclopedia of Evolutionary Biology; Kliman, R., Ed.; Academic Press: Oxford, UK, 2016; Volume 4, pp. 272–282. [Google Scholar] [CrossRef]
- Moran, N.A. Symbiosis as an adaptive process and source of phenotypic complexity. Proc. Natl. Acad. Sci. USA 2007, 104 (Suppl. 1), 8627–8633. [Google Scholar] [CrossRef] [Green Version]
- Sapp, J. Evolution by Association: A History of Symbiosis; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Sapp, J. The dynamics of symbiosis: An historical overview. Can. J. Bot. 2004, 82, 1046–1056. [Google Scholar] [CrossRef]
- McDougall, W. The classification of symbiotic phenomena. Plant. World 1918, 21, 250–256. [Google Scholar]
- Pfeffer, W. Physiology of Plants, English Edition Translated by AJ Ewart; Clarendon Press: Oxford, UK, 1899. [Google Scholar]
- Van Beneden, P.J. Un mot sur la vie sociale des animaux inférieurs. Bull. Acad. R. Belg. 1873, 2, 779–796. [Google Scholar]
- Toynbee, A.J. A Study of History, Somervell Abridgement of Vols. I-VI.; Oxford University Press: New York, NY, USA, 1947. [Google Scholar]
- Haskell, E. Generalization of the structure of Mendeleev’s periodic table. In Full Circle, The Moral Force of Unified Science; Haskell, E., Ed.; Gordon and Breach: New York, NY, USA, 1972; pp. 21–90. [Google Scholar]
- Cowles, H.C. Hereditary symbiosis. Bot. Gaz. 1915, 59, 61–63. [Google Scholar] [CrossRef]
- Von Faber, F.C. Das erbliche Zusammenleben von Bakterien und tropischen Pflanzen. Jahrb. Wiss. Bot. 1912, 51, III. [Google Scholar]
- Buchner, P. Tier und Pflanze in Intrazellularer Symbiose; Gebrüder Borntraeger: Berlin, Germany, 1921. [Google Scholar]
- Buchner, P. Symbiose der Tiere mit Pflanzlichen Mikroorganismen; De Gruyter: Berlin, Germany, 1939. [Google Scholar]
- Schneider, A. The phenomena of symbiosis. Minn. Bot. Stud. 1897, 1, 923–948. [Google Scholar]
- Roossinck, M. Even viruses can be beneficial microbes. Microbiol. Aust. 2012, 33, 111–112. [Google Scholar] [CrossRef]
- Villarreal, L.P.; Witzany, G. Viruses are essential agents within the roots and stem of the tree of life. J. Theor. Biol. 2010, 262, 698–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prusiner, S.B. Molecular biology of prion diseases. Science 1991, 252, 1515–1522. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, J.A. Evolution: A View from the 21st Century; FT Press: Upper Saddle River, NJ, USA, 2011. [Google Scholar]
- Corning, P.A. Systems theory and the role of synergy in the evolution of living systems. Syst. Res. 2014, 31, 181–196. [Google Scholar] [CrossRef]
- Reinke, J. Zur Kenntniss des Rhizoms von Corallorhiza und Epipogon. Flora 1873, 31, 145–209. [Google Scholar]
- Carrapiço, F. The origins of life and the mechanisms of biological evolution. In SPIE 6309, Instruments, Methods, and Missions for Astrobiology IX, Proceedings of the SPIE Optics + Photonics, San Diego, CA, USA, 14 September 2006; SPIE.Digital Library: Bellingham, DC, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Carrapiço, F. Azolla as a superorganism: Its implication in symbiotic studies. In Symbioses and Stress; Seckbach, J., Grube, M., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 225–241. [Google Scholar] [CrossRef]
- Lederberg, J. Cell genetics and hereditary symbiosis. Physiol. Rev. 1952, 32, 403–430. [Google Scholar] [CrossRef]
- Koestler, A. The Ghost in the Machine; Penguin: London, UK, 1967. [Google Scholar]
- Sapp, J. Genesis: The Evolution of Biology; Oxford University Press: New York, NY, USA, 2003. [Google Scholar]
- Meyer-Abich, A. Beiträge zur Theorie der Evolution der Organismen I: Das typologische Grundgesetz und seine Folgerungen für Phylogenie und Entwicklungsphysiologie. Acta Biotheor. 1943, 7, 1–80. [Google Scholar] [CrossRef]
- Meyer-Abich, A. Naturphilosophie auf Neuen Wegen; Hippokrates-Verlag Marquardt: Stuttgart, Germany, 1948. [Google Scholar]
- Rosenberg, E.; Zilber-Rosenberg, I. The Hologenome Concept: Human, Animal and Plant Microbiota; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Gontier, N. Symbiogenesis, History of. In Encyclopedia of Evolutionary Biology; Kliman, R., Ed.; Academic Press: Oxford, UK, 2016; Volume 4, pp. 261–271. [Google Scholar] [CrossRef]
- Delwiche, C.F. Tracing the thread of plastid diversity through the tapestry of life. Am. Nat. 1999, 154, S164–S177. [Google Scholar] [CrossRef] [PubMed]
- McFadden, G. Primary and secondary endosymbiosis and the origin of plastids. J. Phycol. 2001, 37, 951–959. [Google Scholar] [CrossRef]
- McFadden, G.I.; van Dooren, G.G. Evolution: Red algal genome affirms a common origin of all plastids. Curr. Biol. 2004, 14, R514–R516. [Google Scholar] [CrossRef] [Green Version]
- Martin, W.F.; Garg, S.; Zimorski, V. Endosymbiotic theories for eukaryote origin. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livingstone Bell, P.J. Viral eukaryogenesis: Was the ancestor of the nucleus a complex DNA virus? J. Mol. Evol. 2001, 53, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Dunning Hotopp, J.C.; Clark, M.E.; Oliveira, D.C.; Jeremy, M.F.; Peter, F.; Mónica, C.M.T.; Jonathan, D.G.; Nikhil, K.; Nadeeza, I.; Shiliang, W.; et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 2007, 317, 1753–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husnik, F.; McCutcheon, J.P. Functional horizontal gene transfer from bacteria to eukaryotes. Nat. Rev. Microbiol. 2018, 16, 67–79. [Google Scholar] [CrossRef]
- Ryan, F. Virolution; Harper Collins: London, UK, 2009. [Google Scholar]
- Danchin, E. Lateral gene transfer in eukaryotes: Tip of the iceberg or of the ice cube? BMC Biol. 2016, 14, 101. [Google Scholar] [CrossRef] [Green Version]
- Ku, C.; Martin, W.F. A natural barrier to lateral gene transfer from prokaryotes to eukaryotes revealed from genomes: The 70% rule. BMC Biol. 2016, 14, 89. [Google Scholar] [CrossRef] [Green Version]
- Avery, O.T.; MacLeod, C.M.; McCarty, M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus type III. J. Exp. Med. 1944, 79, 137–158. [Google Scholar] [CrossRef]
- Griffith, F. The significance of pneumococcal types. J. Hyg. (Lond.) 1928, 27, 113–159. [Google Scholar] [CrossRef] [Green Version]
- Grohmann, E.; Muth, G.; Espinosa, M. Conjugative plasmid transfer in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 2003, 67, 277–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lederberg, J.; Tatum, E.L. Gene recombination in E coli. Nature 1946, 158, 558. [Google Scholar] [CrossRef] [PubMed]
- Lwoff, A. Lysogeny. Bacteriol. Rev. 1953, 17, 269–337. [Google Scholar] [CrossRef]
- Morse, M.L.; Lederberg, E.M.; Lederberg, J. Transduction in Escherichia coli K-12. Genetics 1956, 41, 142–156. [Google Scholar]
- Zinder, N.D.; Lederberg, J. Genetic exchange in Salmonella. J. Bacteriol. 1952, 64, 679–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gontier, N. Historical and epistemological perspectives on what horizontal gene transfer mechanisms contribute to our understanding of evolution. In Reticulate Evolution; Gontier, N., Ed.; Springer: Cham, Switzerland, 2015; Volume 3, pp. 121–178. [Google Scholar] [CrossRef]
- Haldane, J.B.S. Disease and evolution. Ric. Sci. Suppl. A 1949, 19, 68–76. [Google Scholar]
- Gontier, N. Reticulate evolution everywhere. In Reticulate Evolution; Gontier, N., Ed.; Springer: Cham, Switzerland, 2015; Volume 3, pp. 1–40. [Google Scholar] [CrossRef]
- Moreira, L.A.; Iturbe-Ormaetxe, I.; Jeffery, J.A.; Lu, G.; Pyke, A.T.; Hedges, L.M.; Rocha, B.C.; Hall-Mendelin, S.; Day, A.; Riegler, M.; et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 2009, 139, 1268–1278. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, S.F.; Sapp, J.; Tauber, A.I. A symbiotic view of life: We have never been individuals. Q. Rev. Biol. 2012, 87, 325–341. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, P. Time to consider the concept of a commensal virus? Rev. Med. Virol. 1999, 9, 73–74. [Google Scholar] [CrossRef]
- Lecuit, M.; Eloit, M. The human virome: New tools and concepts. Trends Microbiol. 2013, 21, 510–515. [Google Scholar] [CrossRef]
- Sapp, J. The New Foundations of Evolution; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Tauber, A.I. The Immune Self: Theory or Metaphor? Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Larson, J. The species concept of Linnaeus. Isis 1969, 59, 291–299. [Google Scholar] [CrossRef]
- Stukenbrock, E.H. The role of hybridization in the evolution and emergence of new fungal plant pathogens. Phytopathology 2016, 106, 104–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eberlein, C.; Hénault, M.; Fijarczyk, A.; Chris, E.; Mathieu, H.; Anna, F.; Guillaume, C.; Matteo, B.; Linda, M.K.; James, B.A.; et al. Hybridization is a recurrent evolutionary stimulus in wild yeast speciation. Nat. Commun. 2019, 10, 923. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.A.; Larson, E.L.; Harrison, R.G. Hybrid zones: Windows on climate change. Trends Ecol. Evol. 2015, 30, 398–406. [Google Scholar] [CrossRef] [Green Version]
- López-Caamal, A., II; Tovar-Sánchez, E. Genetic, morphological, and chemical patterns of plant hybridization. Rev. Chil. Hist. Nat. 2014, 87, 16. [Google Scholar] [CrossRef] [Green Version]
- Mallet, J. Hybrid speciation. Nature 2007, 446, 279–283. [Google Scholar] [CrossRef]
- Rieseberg, L.H. Hybrid origins of plant species. Annu. Rev. Ecol. Syst. 1997, 28, 359–389. [Google Scholar] [CrossRef] [Green Version]
- Stebbins, G.L. Variation and Evolution in Plants; Columbia University Press: New York, NY, USA, 1950. [Google Scholar]
- Abbott, R.; Albach, D.; Ansell, S.; Arntzen, J.W.; Baird, S.J.E.; Bierne, N.; Boughman, J.; Brelsford, A.; Buerkle, C.A.; Buggs, R.; et al. Hybridization and speciation. J. Evol. Biol. 2013, 26, 229–246. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E. Introgressive Hybridization; Wiley: New York, NY, USA, 1949. [Google Scholar]
- Merezhkowsky, C. Theorie der zwei Plasmaarten als Grundlage der Symbiogenese, einer neuen Lehre von der Entstehung der Organismen. Biol. Zent. 1910, 30, 278–303, 321–347, 353–367. [Google Scholar]
- Whittaker, R.H.; Margulis, L. Protist classification and the kingdoms of organisms. Biosystems 1978, 10, 3–18. [Google Scholar] [CrossRef]
- Lutzoni, F.; Pagel, M.; Reeb, V. Major fungal lineages are derived from lichen symbiotic ancestors. Nature 2001, 411, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Hawksworth, D. The variety of fungal–algal symbioses, their evolutionary significance, and the nature of lichens. Bot. J. Linn. Soc. 1988, 96, 3–20. [Google Scholar] [CrossRef]
- Honegger, R. Functional aspects of Lichen symbiosis. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 1991, 42, 553–578. [Google Scholar] [CrossRef]
- Archibald, J.M.; Richards, T.A. Gene transfer: Anything goes in plant mitochondria. BMC Biol. 2010, 8, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, W.; Herrmann, R.G. Gene transfer from organelles to the nucleus: How much, what happens, and Why? Plant. Physiol. 1998, 118, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Lederberg, E.M.; Lederberg, J. Genetic studies of lysogenicity in Escherichia coli. Genetics 1953, 38, 51–64. [Google Scholar]
- Barondess, J.J.; Beckwith, J. bor gene of phage lambda, involved in serum resistance, encodes a widely conserved outer membrane lipoprotein. J. Bacteriol. 1995, 177, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Miajlovic, H.; Smith, S.G. Bacterial self-defense: How Escherichia coli evades serum killing. FEMS Microbiol. Lett. 2014, 354, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Burns, K.H. Our conflict with transposable elements and its implications for human disease. Annu. Rev. Pathol. 2020, 15, 51–70. [Google Scholar] [CrossRef] [Green Version]
- McClintock, B. Chromosome morphology of Zey mays. Science 1929, 69, 629. [Google Scholar] [CrossRef]
- McClintock, B. The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA 1950, 36, 344–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finnegan, D.J. Eukaryotic transposable elements and genome evolution. Trends Genet. 1989, 5, 103–107. [Google Scholar] [CrossRef]
- Gregory, R. A Word about ‘Junk DNA’. Evolver Zone Genomicron. 2007. Available online: http://www.genomicron.evolverzone.com/2007/04/word-about-junk-dna (accessed on 1 January 2020).
- Lotze, M.T.; Kost, T.A. Viruses as gene delivery vectors: Application to gene function, target validation, and assay development. Cancer Gene Ther. 2002, 9, 692–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, M.L.; Ballerini, E.S.; Brothers, A.N. Hybrid fitness, adaptation and evolutionary diversification: Lessons learned from Louisiana Irises. Heredity (Edinb.) 2012, 108, 159–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, R.; Krause, J.; Briggs, A.; Maricic, T.; Stenzel, U.; Kircher, M.; Patterson, N.; Li, H.; Zhai, W.; Hsi-Yang, M.; et al. A draft sequence of the Neanderthal genome. Science 2010, 328, 710–722. [Google Scholar] [CrossRef] [Green Version]
- Prfüer, K.; De Filippo, C.; Grote, S.; Mafessoni, F.; Korlević, P.; Hajdinjak, M.; Vernot, B.; Skov, L.; Hsieh, P.; Peyrégne, S.; et al. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science 2017, 358, 655–658. [Google Scholar] [CrossRef]
- Prüfer, K.; Racimo, F.; Patterson, N.; Jay, F.; Sankararaman, S.; Sawyer, S.; Heinze, A.; Renaud, G.; Sudmant, P.H.; De Filippo, C.; et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 2013, 505, 43–49. [Google Scholar] [CrossRef]
- Vernot, B.; Akey, J.M. Complex History of Admixture between Modern Humans and Neandertals. Am. J. Hum. Gene 2015, 96, 448–453. [Google Scholar] [CrossRef] [Green Version]
- Wall, J.D.; Yang, M.A.; Jay, F.; Kim, S.K.; Durand, E.Y.; Stevison, L.S.; Gignoux, C.; Woerner, A.; Hammer, M.F.; Slatkin, M. Higher Levels of Neanderthal Ancestry in East Asians than in Europeans. Genetics 2013, 194, 199–209. [Google Scholar] [CrossRef]
- Chen, L.; Wolf, A.B.; Fu, W.; Li, L.; Akey, J.M. Identifying and Interpreting Apparent Neanderthal Ancestry in African Individuals. Cell 2020, 180, 677–687.e16. [Google Scholar] [CrossRef]
- Vernot, B.; Akey, J.M. Resurrecting Surviving Neandertal Lineages from Modern Human Genomes. Science 2014, 343, 1017–1021. [Google Scholar] [CrossRef]
- Dannemann, M.; Kelso, J. The Contribution of Neanderthals to Phenotypic Variation in Modern Humans. Am. J. Hum. Genet. 2017, 101, 578–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montgomery, M.K.; McFall-Ngai, M. Bacterial symbionts induce host organ morphogenesis during early postembryonic development of the squid Euprymna scolopes. Development 1994, 120, 1719–1729. [Google Scholar] [PubMed]
- McFall-Ngai, M. The importance of microbes in animal development: Lessons from the squid-vibrio symbiosis. Annu. Rev. Microbiol. 2014, 68, 177–194. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; McFall-Ngai, M.; Callaerts, P.; de Couet, G.H. Emerging model systems: The Hawaiian bobtail squid (Euprymna scolopes) as a model to study the molecular basis of eukaryote-prokaryote mutualism and the development and evolution of morphological novelties in cephalopods. Cold Spring Harb. 2009, 4, 1394–1402, 1471–1488. [Google Scholar]
- Shibata, S.; Visick, K.L. Sensor Kinase RscS Induces the Production of Antigenically Distinct Outer Membrane Vesicles That Depend on the Symbiosis Polysaccharide Locus in Vibrio fischeri. J. Bacteriol. 2011, 194, 185–194. [Google Scholar] [CrossRef]
- Visick, K.L.; Foster, J.; Doino, J.; McFall-Ngai, M.; Ruby, E.G. Vibrio fischeri lux Genes Play an Important Role in Colonization and Development of the Host Light Organ. J. Bacteriol. 2000, 182, 4578–4586. [Google Scholar] [CrossRef] [Green Version]
- Altura, M.A.; Heath-Heckman, E.A.C.; Gillette, A.; Kremer, N.; Krachler, A.M.; Brennan, C.A.; Ruby, E.G.; Orth, K.; McFall-Ngai, M. The first engagement of partners in the Euprymna scolopes-Vibrio fischeri symbiosis is a two-step process initiated by a few environmental symbiont cells. Environ. Microbiol. 2013, 15, 2937–2950. [Google Scholar] [CrossRef] [Green Version]
- Bongrand, C.; Ruby, E.G. The impact of Vibrio fischeri strain variation on host colonization. Curr. Opin. Microbiol. 2019, 50, 15–19. [Google Scholar] [CrossRef]
- Kremer, N.; Koch, E.J.; El Filali, A.; Zhou, L.; Heath-Heckman, E.A.C.; Ruby, E.G.; McFall-Ngai, M.J. Persistent Interactions with Bacterial Symbionts Direct Mature-Host Cell Morphology and Gene Expression in the Squid-Vibrio Symbiosis. mSystems 2018, 3, e00165-18. [Google Scholar] [CrossRef] [Green Version]
- Kremer, N.; Philipp, E.E.; Carpentier, M.-C.; Brennan, C.A.; Kraemer, L.; Altura, M.A.; Augustin, R.; Häsler, R.; Heath-Heckman, E.A.C.; Peyer, S.M.; et al. Initial symbiont contact orchestrates host-organ-wide transcriptional changes that prime tissue colonization. Cell Host Microbe 2013, 14, 183–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, T. Infective Heredity of Multiple Drug Resistance in Bacteria. Bacteriol. Rev. 1963, 27, 87–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwasaki, W.; Takagi, T. Rapid Pathway Evolution Facilitated by Horizontal Gene Transfers across Prokaryotic Lineages. PLoS Genet. 2009, 5, e1000402. [Google Scholar] [CrossRef] [PubMed]
- Ashley-Koch, A.E.; Yang, Q.; Olney, R.S. Sickle hemoglobin (HbS) allele and sickle cell disease: A HuGE review. Am. J. Epidemiol. 2000, 151, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Dieterich, W.; Schink, M.; Zopf, Y. Microbiota in the Gastrointestinal Tract. Med. Sci. 2018, 6, 116. [Google Scholar] [CrossRef] [Green Version]
- Arnold, M.L.; Kentner, E.K.; Johnston, J.A.; Cornman, S.; Bouck, A.C. Natural hybridisation and fitness. TAXON 2001, 50, 93–104. [Google Scholar] [CrossRef]
- Correns, C. Über Nichtmendelnde Vererbung. Z. Indukt. Abstamm. Vererb. 1928, I, 131–168. [Google Scholar]
- Hagemann, R. Erwin Baur or Carl Correns: Who really created the theory of plastid inheritance? Am. Genet. Assoc. 2001, 91, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Carrapiço, F. Are bacteria the third partner of the Azolla-Anabaena symbiosis? In Advanced Structural Safety Studies; Polsinelli, M., Materassi, R., Vincenzini, M., Eds.; Springer: Dordrecht, The Netherlands, 1991; Volume 48, pp. 453–456. [Google Scholar]
- Shropshire, J.D.; Bordenstein, S. Speciation by Symbiosis: The Microbiome and Behavior. mBio 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Bourtzis, K.; Nirgianaki, A.; Markakis, G.; Savakis, C. Wolbachia Infection and Cytoplasmic Incompatibility in Drosophila Species. Genetics 1996, 144, 1063–1073. [Google Scholar]
- Sasaki, T.; Kubo, T.; Ishikawa, H. Interspecific transfer of Wolbachia between two lepidopteran insects expressing cytoplasmic incompatibility: A Wolbachia variant naturally infecting Cadra cautella causes male killing in Ephestia kuehniella. Genetics 2002, 162, 1313–1319. [Google Scholar] [PubMed]
- Bouchon, D.; Rigaud, T.; Juchault, P. Evidence for widespread Wolbachia infection in isopod crustaceans: Molecular identification and host feminization. Proc. R. Soc. B Boil. Sci. 1998, 265, 1081–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheeley, S.L.; McAllister, B.F. Mobile male-killer: Similar Wolbachia strains kill males of divergent Drosophila hosts. Heredity 2009, 102, 286–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schilthuizen, M.; Stouthamer, R. Horizontal transmission of parthenogenesis-inducing microbes in Trichogramma wasps. Proc. R. Soc. B Boil. Sci. 1997, 264, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Vavre, F.; Fleury, F.; Lepetit, D.; Fouillet, P.; Bouletreau, M. Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Mol. Boil. Evol. 1999, 16, 1711–1723. [Google Scholar] [CrossRef] [Green Version]
- Stouthamer, R.; Breeuwer, J.A.J.; Hurst, G.D.D. Wolbachia Pipientis: Microbial Manipulator of Arthropod Reproduction. Annu. Rev. Microbiol. 1999, 53, 71–102. [Google Scholar] [CrossRef]
- Faria, V.G.; Sucena, É. Novel Endosymbioses as a Catalyst of Fast Speciation. In Reticulate Evolution; Gontier, N., Ed.; Springer: Cham, Switzerland, 2015; Volume 3, pp. 107–120. [Google Scholar]
- Hurst, G.D.D.; Jiggins, F.M.; Von Der Schulenburg, J.H.G.; Bertrand, D.; West, S.A.; Goriacheva, I.I.; Zakharov, I.A.; Werren, J.H.; Stouthamer, R.; Majerus, M.E.N. Male—killingwolbachiain two species of insect. Proc. R. Soc. B Boil. Sci. 1999, 266, 735–740. [Google Scholar] [CrossRef] [Green Version]
- Werren, J.H.; Baldo, L.; Clark, M.E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Genet. 2008, 6, 741–751. [Google Scholar] [CrossRef]
- Archibald, J. One Plus One Equals One: Symbiosis and the Evolution of Complex Life; Oxford University Press: New York, NY, USA, 2014. [Google Scholar]
- Sonneborn, T.M. Sex, Sex Inheritance and Sex Determination in Paramecium Aurelia. Proc. Natl. Acad. Sci. USA 1937, 23, 378–385. [Google Scholar] [CrossRef] [Green Version]
- Preer, J.R.; Preer, L.B., Jr.; Jurand, A. Kappa and other endosymbionts in Paramecium aurelia. Bacteriol. Rev. 1974, 38, 113–163. [Google Scholar] [CrossRef]
- Prince, A.L.; Chu, D.M.; Seferovic, M.D.; Antony, K.M.; Ma, J.; Aagaard, K. The Perinatal Microbiome and Pregnancy: Moving Beyond the Vaginal Microbiome. Cold Spring Harb. Perspect. Med. 2015, 5, a023051. [Google Scholar] [CrossRef] [PubMed]
- Aagaard, K.; Ma, J.; Antony, K.M.; Ganu, R.; Petrosino, J.; Versalovic, J. The Placenta Harbors a Unique Microbiome. Sci. Transl. Med. 2014, 6, 237ra65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesa, M.-D.; Loureiro, B.; Iglesia, I.; Gonzalez, S.F.; Olivé, E.L.; Garcia-Algar, O.; Solana, M.J.; Perez, M.J.C.; Sainz, T.; Martinez, L.; et al. The Evolving Microbiome from Pregnancy to Early Infancy: A Comprehensive Review. Nutrients 2020, 12, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrlich, P. Bemerkungen über die Immunität durch Vererbung und Säugung. Deut. Med. Wochenschr. 1892, 18, 511. [Google Scholar] [CrossRef]
- Kordy, K.; Gaufin, T.; Mwangi, M.; Li, F.; Cerini, C.; Lee, D.J.; Adisetiyo, H.; Woodward, C.; Pannaraj, P.S.; Tobin, N.H.; et al. Contributions to human breast milk microbiome and enteromammary transfer of Bifidobacterium breve. PLoS ONE 2020, 15, e0219633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muletz-Wolz, C.R.; Kurata, N.; Himschoot, E.; Wenker, E.; Quinn, E.A.; Hinde, K.; Power, M.L.; Fleischer, R.C. Diversity and temporal dynamics of primate milk microbiomes. Am. J. Primatol. 2019, 81, e22994. [Google Scholar] [CrossRef] [PubMed]
- Blond, J.-L.; Besème, F.; Duret, L.; Bouton, O.; Bedin, F.; Perron, H.; Mandrand, B.; Mallet, F. Molecular Characterization and Placental Expression of HERV-W, a New Human Endogenous Retrovirus Family. J. Virol. 1999, 73, 1175–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blond, J.-L.; Lavillette, D.; Cheynet, V.; Bouton, O.; Oriol, G.; Chapel-Fernandes, S.; Mandrand, B.; Mallet, F.; Cosset, F.L. An Envelope Glycoprotein of the Human Endogenous Retrovirus HERV-W Is Expressed in the Human Placenta and Fuses Cells Expressing the Type D Mammalian Retrovirus Receptor. J. Virol. 2000, 74, 3321–3329. [Google Scholar] [CrossRef] [Green Version]
- Darwin, C. The Effects of Cross- and Self-Fertilization in the Vegetable Kingdom; John Murrey: London, UK, 1876. [Google Scholar]
- Shull, G.H. What Is ‘Heterosis’? Genetics 1948, 33, 439–446. [Google Scholar]
- Crow, J.F. 90 years ago: The beginning of hybrid maize. Genetics 1998, 148, 923–928. [Google Scholar]
- Chen, Z.J. Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci. 2010, 15, 57–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waddington, C.H. Canalization of Development and Genetic Assimilation of Acquired Characters. Nature 1959, 183, 1654–1655. [Google Scholar] [CrossRef] [PubMed]
- Eldredge, N.; Thompson, J.; Brakefield, P.; Gavrilets, S. The dynamics of evolutionary stasis. Paleobiology 2005, 31, 133–145. [Google Scholar] [CrossRef]
- Rosenberg, E.; Zilber-Rosenberg, I. Symbiosis and development: The hologenome concept. Birth Defects Res. Part C Embryo Today Rev. 2011, 93, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Szathmáry, E.; Smith, J.M. The major evolutionary transitions. Nature 1995, 374, 227–232. [Google Scholar] [CrossRef]
- Bradie, M. Assessing evolutionary epistemology. Boil. Philos. 1986, 1, 401–459. [Google Scholar] [CrossRef]
- Buri, J.R.; Gunty, A.; Dukas, R.; Even, R.; Scheuer, O.; McLaren, B.M.; Okan, Z.; Everhart, D.E.; Schmidt-Kassow, M.; Hii, S.C.; et al. Evolutionary Epistemology. Encycl. Sci. Learn. 2012, I, 1193. [Google Scholar] [CrossRef]
- Gontier, N. Evolutionary epistemology as a scientific method: A new look upon the units and levels of evolution debate. Theor. Biosci. 2011, 4, 515–538. [Google Scholar] [CrossRef]
- Gontier, N. On How Epistemology and Ontology Converge Through Evolution: The Applied Evolutionary Epistemological Approach. In Extreme Events in Nature and Society; Wuppuluri, S., Doria, F.A., Eds.; Springer: Cham, Switzerland, 2018; pp. 533–569. [Google Scholar]
- Feldhaar, H.; Gross, R. Genome degeneration affects both extracellular and intracellular bacterial endosymbionts. J. Boil. 2009, 8, 31. [Google Scholar] [CrossRef]
- Fitzpatrick, D.A.; E Logue, M.; Butler, G. Evidence of recent interkingdom horizontal gene transfer between bacteria and Candida parapsilosis. BMC Evol. Boil. 2008, 8, 181. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, J.A. Constraint and opportunity in genome innovation. RNA Boil. 2013, 11, 186–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullrich, S.R.; González, C.; Poehlein, A.; Tischler, J.S.; Daniel, R.; Schlömann, M.; Holmes, D.S.; Mühling, M. Gene Loss and Horizontal Gene Transfer Contributed to the Genome Evolution of the Extreme Acidophile “Ferrovum”. Front. Microbiol. 2016, 7, 797. [Google Scholar] [CrossRef] [PubMed]
- Caragata, E.P.; Rocha, M.N.; Pereira, T.N.; Mansur, S.B.; Dutra, H.L.C.; Moreira, L.A. Pathogen blocking in Wolbachia-infected Aedes aegypti is not affected by Zika and dengue virus co-infection. PLOS Negl. Trop. Dis. 2019, 13, e0007443. [Google Scholar] [CrossRef] [PubMed]
- Mayr, E. The Growth of Biological Thought; Harvard University Press: Cambridge, MA, USA, 1982. [Google Scholar]
- Brucker, R.M.; Bordenstein, S. Speciation by symbiosis. Trends Ecol. Evol. 2012, 27, 443–451. [Google Scholar] [CrossRef]
- Mira, A.; Moran, N. Estimating Population Size and Transmission Bottlenecks in Maternally Transmitted Endosymbiotic Bacteria. Microb. Ecol. 2002, 44, 137–143. [Google Scholar] [CrossRef]
- Telschow, A.; Hammerstein, P.; Werren, J.H. The effect of Wolbachia versus genetic incompatibilities on reinforcement and speciation. Evolution 2005, 59, 1607–1619. [Google Scholar] [CrossRef]
- Werren, J.H. Wolbachia and speciation. In Endless Forms: Species and Speciation; Hoard, D., Berlocher, S., Eds.; Oxford University Press: Oxford, UK, 1998; pp. 245–260. [Google Scholar]
- Dodd, D.M.B. Reproductive Isolation as a Consequence of Adaptive Divergence in Drosophila Pseudoobscura. Evolution 1989, 43, 1308–1311. [Google Scholar] [CrossRef]
- Sharon, G.; Segal, D.; Ringo, J.M.; Hefetz, A.; Zilber-Rosenberg, I.; Rosenberg, E. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2010, 107, 20051–20056. [Google Scholar] [CrossRef] [Green Version]
- Froebe, C.; Simone, A.; Charig, A.; Eigen, E. Axillary malodor production: A new mechanism. J. Soc. Cosmet. Chem. 1990, 41, 173–185. [Google Scholar]
- Troccaz, M.; Gaïa, N.; Beccucci, S.; Schrenzel, J.; Cayeux, I.; Starkenmann, C.; Lazarevic, V. Mapping axillary microbiota responsible for body odours using a culture-independent approach. Microbiome 2015, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Delzenne, N.; Bindels, L.B. Gut microbiota: Ganoderma lucidum, a new prebiotic agent to treat obesity? Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 553–554. [Google Scholar] [CrossRef] [PubMed]
- Inglis, J.E.; Ilich, J.Z. The Microbiome and Osteosarcopenic Obesity in Older Individuals in Long-Term Care Facilities. Curr. Osteoporos. Rep. 2015, 13, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Hong, J.; Xu, X.; Feng, Q.; Zhang, D.; Gu, Y.; Shi, J.; Zhao, S.; Liu, W.; Wang, X.; et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 2017, 23, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Coello, K.; Hansen, T.H.; Sørensen, N.; Munkholm, K.; Kessing, L.V.; Pedersen, O.; Vinberg, M. Gut microbiota composition in patients with newly diagnosed bipolar disorder and their unaffected first-degree relatives. Brain Behav. Immun. 2019, 75, 112–118. [Google Scholar] [CrossRef]
- Ng, Q.X.; Peters, C.; Ho, C.Y.X.; Lim, D.Y.; Yeo, W.-S. A meta-analysis of the use of probiotics to alleviate depressive symptoms. J. Affect. Disord. 2018, 228, 13–19. [Google Scholar] [CrossRef]
- Schmidt, C. Mental health: Thinking from the Gut. Nature 2015, 518, S12–S14. [Google Scholar] [CrossRef] [Green Version]
- Matsuura, K. Nestmate recognition mediated by intestinal bacteria in a termite, Reticulitermes speratus. Oikos 2001, 92, 20–26. [Google Scholar] [CrossRef]
- Theis, K.R.; Venkataraman, A.; Dycus, J.A.; Koonter, K.D.; Schmitt-Matzen, E.N.; Wagner, A.P.; Holekamp, K.E.; Schmidt, T.M. Symbiotic bacteria appear to mediate hyena social odors. Proc. Natl. Acad. Sci. USA 2013, 110, 19832–19837. [Google Scholar] [CrossRef] [Green Version]
- Tung, J.; Barreiro, L.; Burns, M.B.; Grenier, J.-C.; Lynch, J.; Grieneisen, L.E.; Altmann, J.; Alberts, S.C.; Blekhman, R.; Archie, E.A. Social networks predict gut microbiome composition in wild baboons. eLife 2015, 4, e05224. [Google Scholar] [CrossRef]
- Papke, R.T.; Corral, P.; Ram-Mohan, N.; De La Haba, R.R.; Sánchez-Porro, C.; Makkay, A.; Ventosa, A. Horizontal Gene Transfer, Dispersal and Haloarchaeal Speciation. Life 2015, 5, 1405–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowell, R.W.; Green, S.; Laue, B.E.; Sharp, P.M. The extent of genome flux and its role in the differentiation of bacterial lineages. Genome Boil. Evol. 2014, 6, 1514–1529. [Google Scholar] [CrossRef]
- Serrato-Capuchina, A.; Matute, D.R. The Role of Transposable Elements in Speciation. Genes 2018, 9, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stapley, J.; Santure, A.W.; Dennis, S.R. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol. Ecol. 2015, 24, 2241–2252. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.-D.; Wang, W.; Guo, W.-P.; Zhang, X.-H.; Xing, J.-G.; Chen, S.-Z.; Li, M.-H.; Chen, Y.; Xu, J.; Plyusnin, A.; et al. Cross-Species Transmission in the Speciation of the Currently Known Murinae-Associated Hantaviruses. J. Virol. 2012, 86, 11171–11182. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.-D.; Wang, W.; Hao, Z.-Y.; Wang, Z.-X.; Guo, W.-P.; Guan, X.-Q.; Wang, M.-R.; Wang, H.-W.; Zhou, R.-H.; Li, M.-H.; et al. Extensive diversity of coronaviruses in bats from China. Virology 2017, 507, 1–10. [Google Scholar] [CrossRef]
- Drosten, C.; Günther, S.; Preiser, W.; Van Der Werf, S.; Brodt, H.-R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.; et al. Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. N. Engl. J. Med. 2003, 348, 1967–1976. [Google Scholar] [CrossRef]
- Li, W. Bats Are Natural Reservoirs of SARS-Like Coronaviruses. Science 2005, 310, 676–679. [Google Scholar] [CrossRef]
- Zaki, A.M.; Van Boheemen, S.; Bestebroer, T.; Osterhaus, A.; Fouchier, R. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. N. Engl. J. Med. 2012, 367, 1814–1820. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, W.; Huang, X.; Bell, E.W.; Zhou, X.; Zhang, Y. Protein Structure and Sequence Reanalysis of 2019-nCoV Genome Refutes Snakes as Its Intermediate Host and the Unique Similarity between Its Spike Protein Insertions and HIV-1. J. Proteome Res. 2020, 19, 1351–1360. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, M.L. Hybrid Speciation. In Oxford Bibliographies Online Datasets; Oxford University Press (OUP): Oxford, UK, 2014. [Google Scholar]
- Soltis, P.S.; Soltis, D.E. The Role of Hybridization in Plant Speciation. Annu. Rev. Plant Boil. 2009, 60, 561–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debodt, S.; Maere, S.; Vandepeer, Y. Genome duplication and the origin of angiosperms. Trends Ecol. Evol. 2005, 20, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Wood, T.E.; Takebayashi, N.; Barker, M.S.; Mayrose, I.; Greenspoon, P.B.; Rieseberg, L.H. The frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. USA 2009, 106, 13875–13879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Pozo, J.C.; Ramirez-Parra, E. Whole genome duplications in plants: An overview fromArabidopsis. J. Exp. Bot. 2015, 66, 6991–7003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turrill, W.B. Solanum dulcamara and its inflorescence. Rep. Bot. Soc. Exch. Club Brit. Isles 1935, 11, 82–89. [Google Scholar]
- Schmidt, K.P.; Huxley, J. Evolution the Modern Synthesis. Copeia 1943, 1943, 262. [Google Scholar] [CrossRef]
- Van Valen, L. A new evolutionary law. Evol. Theor. 1973, 1, 1–30. [Google Scholar]
- Benton, M. When Life Nearly Died: The Greatest Mass Extinction of All Time; Thames and Hudson: London, UK, 2005. [Google Scholar]
- Min, K.-T.; Benzer, S. Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc. Natl. Acad. Sci. USA 1997, 94, 10792–10796. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.J.; Lovelock, J.E. Biological homeostasis of the global environment: The parable of Daisyworld. Tellus B Chem. Phys. Meteorol. 1983, 4, 284–289. [Google Scholar] [CrossRef]
- Boyle, R.A.; Lenton, T.M.; Watson, A. Symbiotic physiology promotes homeostasis in Daisyworld. J. Theor. Boil. 2011, 274, 170–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morran, L.T.; Schmidt, O.G.; Gelarden, I.A.; Parrish, R.C.; Lively, C.M. Running with the Red Queen: Host-Parasite Coevolution Selects for Biparental Sex. Science 2011, 333, 216–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinbauer, M.; Rassoulzadegan, F. Review: Extinction of microbes: Evidence and potential consequences. Endanger. Species Res. 2007, 3, 205–215. [Google Scholar] [CrossRef]
- Louca, S.; Shih, P.M.; Pennell, M.W.; Fischer, W.W.; Parfrey, L.W.; Doebeli, M. Bacterial diversification through geological time. Nat. Ecol. Evol. 2018, 2, 1458–1467. [Google Scholar] [CrossRef] [PubMed]
- Methot, P.-O.; Alizon, S. Emerging Disease and the Evolution of Virulence: The Case of the 1918–1919 Influenza Pandemic. In Classification, Disease and Evidence; Huneman, P., Lambert, G., Silberstein, M., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 7, pp. 93–130. [Google Scholar]
- World Health Organization. Progress Report on HIV, Viral Hepatitis and Sexually Transmitted Infections 2019: Accountability for the Global Health Sector Strategies, 2016–2021; World Health Organization: Geneva, Switzerland, 2019; Available online: https://apps.who.int/iris/handle/10665/324797 (accessed on 15 May 2020).
- Ryan, F.P. Human endogenous retroviruses in health and disease: A symbiotic perspective. J. R. Soc. Med. 2004, 97, 560–565. [Google Scholar] [CrossRef]
- Rhymer, J.M.; Simberloff, D. Extinction by Hybridization and Introgression. Annu. Rev. Ecol. Syst. 1996, 27, 83–109. [Google Scholar] [CrossRef]
- Maheshwari, S.; Barbash, D.A. The Genetics of Hybrid Incompatibilities. Annu. Rev. Genet. 2011, 45, 331–355. [Google Scholar] [CrossRef]
- Ereshefsky, M. The Poverty of the Linnaean Hierarchy: A Philosophical Study of Biological Taxonomy; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Gontier, N. Depicting the Tree of Life: The Philosophical and Historical Roots of Evolutionary Tree Diagrams. Evol. Educ. Outreach 2011, 4, 515–538. [Google Scholar] [CrossRef] [Green Version]
- Vigliotti, C.; Bicep, C.; Bapteste, E.; Lopez, P.; Corel, E. Tracking the Rules of Transmission and Introgression with Networks. Microbiol. Spectr. 2018, 6, 345–365. [Google Scholar] [CrossRef]
- Borges, R.M. Co-niche construction between hosts and symbionts: Ideas and evidence. J. Genet. 2017, 96, 483–489. [Google Scholar] [CrossRef]
Transformation | The absorption of naked DNA from the environment through the cell membrane [64,65]. |
Conjugation | Transfer of plasmids through cell-to-cell contact. In Gram-negative bacteria, a copy of the double-stranded plasmid of the donor bacterium is transferred to a recipient bacterium, while, in Gram-positive bacteria, the entire plasmid of the donor bacterium can become laterally transferred to a bacterial recipient [66,67]. |
Phage-mediated transduction | During their lytic cycle [68], when bacteriophages destroy their host, they accidentally package bacterial genes from their host and transmit these to recipient bacteria upon infection [69,70,71]. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gontier, N. Testing the “(Neo-)Darwinian” Principles against Reticulate Evolution: How Variation, Adaptation, Heredity and Fitness, Constraints and Affordances, Speciation, and Extinction Surpass Organisms and Species. Information 2020, 11, 352. https://doi.org/10.3390/info11070352
Gontier N. Testing the “(Neo-)Darwinian” Principles against Reticulate Evolution: How Variation, Adaptation, Heredity and Fitness, Constraints and Affordances, Speciation, and Extinction Surpass Organisms and Species. Information. 2020; 11(7):352. https://doi.org/10.3390/info11070352
Chicago/Turabian StyleGontier, Nathalie. 2020. "Testing the “(Neo-)Darwinian” Principles against Reticulate Evolution: How Variation, Adaptation, Heredity and Fitness, Constraints and Affordances, Speciation, and Extinction Surpass Organisms and Species" Information 11, no. 7: 352. https://doi.org/10.3390/info11070352
APA StyleGontier, N. (2020). Testing the “(Neo-)Darwinian” Principles against Reticulate Evolution: How Variation, Adaptation, Heredity and Fitness, Constraints and Affordances, Speciation, and Extinction Surpass Organisms and Species. Information, 11(7), 352. https://doi.org/10.3390/info11070352