Personality Traits, Gamification and Features to Develop an App to Reduce Physical Inactivity
Abstract
:1. Introduction
1.1. A. Physical Activity
1.2. B. Personality
- The need for stimulation can be low or high. If the need for stimulation is classified as low, the person needs freedom in their life, which enables them to have strength, assertiveness and positive interactions with other people. If the need for stimulation is high, the free space is not necessarily needed, energy is drawn from the action itself.
- The need for security is also characterized by a high or low level of expression. For example, if the need for security is low, goals, structures and plans are perceived as obstructive. In addition, people quickly deviate from their goals and strategies. In contrast, structures and plans are regarded as beneficial and adhered to by individuals with a high need for security when implementing goals.
- Persons who, when difficulties arise, attribute the errors to themselves and justify them can be assigned to the specific information intake. Persons with specific information acquisition have a distinctive eye for detail in comparison to automatic information acquisition, to which a perception of the big picture and the recognition of obstacles provide the potential for action.
- Information processing can be based on objective or personal perception. A person with the personality trait of objective information processing conducts conversations on a factual level, acts with foresight and on the basis of an analytical approach. The characteristic of personal information processing is ascribed to people with a great need for harmony and high importance in communication [30].
1.3. C. Digitalization, Appfeatures and Gamification
- (1)
- Which PA activities are of the most interest for physically inactive participants?
- (2)
- Are desires for PA programs dependent on personality traits?
- (3)
- Which factors (e.g., personality aspects) determine the resulting interest in features and gamification and which elements are especially relevant for physically inactive people?
2. Materials and Methods
2.1. Study Design
2.2. Sample
2.3. Measures
- (1)
- Sociodemographic (4 items): The sociodemographic questions covered the number of the respondents living in the household, their age and sex.
- (2)
- Health status and fields of action (5 items), included physical activity (6 items), nutrition (6 items) and relaxation (6 items): In the health status and fields of action thematic block, a survey was conducted on health potentials and deficits in the areas of exercise, nutrition and stress/relaxation (including compliance with WHO criteria). Further questions in the individual fields of action reflected the interest and objectives of the interviewee.
- (3)
- Personality and motivation (4 items): The personality questions were derived from previous qualitative interviews and checked for construct validity in a validation study using the Visual Questionnaire (ViQ) [30]. The ViQ is a validated survey instrument. The results showed a high correlation between the two survey instruments. The implied personality analysis included health-specific questions, which resulted in a manifestation in the four personality dimensions (need for stimulation, need for security, information acquisition and information processing).
- (4)
- Smartphone use (2 items): The questionnaire section on smartphone use was designed to generate information about which mobile devices the participants own and whether health apps are already in use.
- (5)
- App feature (3 items): The questions were aimed at the wishes, ideas and needs of the respondents to design the app in a user-friendly way, adapted to their needs. These were relevant functions, such as the possibility of linking the app with other devices (trackers, smartwatches).
- (6)
- Gamification (3 items): The question block gamification asked about the interest in gamification elements, such as the possibility of progress control or a level increase.
- (7)
- App usage (9 items): The block on app usage enabled an assessment of the interviewee’s usage time, intensity and preferences.
- -
- receiving feedback,
- -
- immaterial rewards,
- -
- leveling up,
- -
- monetary incentives,
- -
- diaries or strategy documentation,
- -
- suggestions for activities,
- -
- earning points,
- -
- fulfilling weekly goals and tasks,
- -
- information or instruction videos,
- -
- reminders,
- -
- knowledge about a healthy lifestyle,
- -
- connection to their health insurance company’s bonus program,
- -
- progress,
- -
- individualization of app content.
2.4. Procedures
2.5. Analyses
- A frequency analysis and a chi-square calculation of the desires for sports (fitness, more active lifestyle, nature activities and health sports) and the appearance of personality traits was carried out.
- The personality traits were then examined with regard to their sport desires using the chi-squared test.
- In a further step, a one-way ANOVA (personality trait, app feature or gamification) was performed to find out which personality traits determine the resulting interest in app features and gamification. For the evaluation, personality traits, app features and gamification elements were divided into three blocks:
- Block I: Personality traits (stimulation needs, security needs, information acquisition and information processing).
- Block II: App features (individualization of app content, coupling the app with trackers or smartwatches, diaries or strategy documentation, suggestions for activities, information or instruction videos, reminder, e.g., setting targets, knowledge about a healthy lifestyle, connection to a health insurance company’s bonus program).
- Block III: Gamification elements (comparison in a ranking or ladder format, progress checks, earning points, collecting points with family, immaterial rewards, monetary incentives, connection to a health insurance company’s bonus program, own avatar, tasks under time pressure (e.g., countdown), level advancement, sharing and comparing goals, history in the app, auditory, haptic or visual feedback, evaluating other family members).
- In the final step, a logistic regression analysis was performed to check the correlation between the identified variables.
3. Results
4. Discussion
4.1. Physical Activity Interests of the Inactive Participants
4.2. Influence of Personality Traits on PA Goals
4.3. Factors Determining Interest in Features and Gamification to Increase PA
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kohl, H.; Craig, C.L.; Lampert, E.; Inove, S.; Alkandari, J.R.; Leetongin, G.; Kahlmeier, S. The pandemic of physical inactivity: Global action for public health. Lancet 2013, 380, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Pratt, M.; Macera, C.A.; Wang, G. Higher Direct Medical Costs Associated With Physical Inactivity. Physician Sportsmed. 2000, 28, 63–70. [Google Scholar] [CrossRef]
- Ding, D.; Lawson, K.D.; Kolbe-Alexander, T.L.; Finkelstein, E.A.; Katzmarzyk, P.T.; van Mechelen, W.; Pratt, M. The economic burden of physical inactivity: A global analysis of major non- communicable diseases. Lancet 2016, 388, 1311–1324. [Google Scholar] [CrossRef]
- Rasche, P.; Schlomann, A.; Mertens, A. Who is still playing Pokémon Go? A Web-Based Survey. JMIR Serious Games 2017, 5, e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, L.; Gauvin, L.; Raine, K. Ecological Models Revisited: Their Uses and Evolution in Health Promotion Over Two Decades. Annu. Rev. Public Health 2011, 32, 307–326. [Google Scholar] [CrossRef] [PubMed]
- Landeszentrum Gesundheit Nordrhein. Bewegung und Gesundheit. Grundlagen. Lebenswelten; Faktenblätter des LZG; Landeszentrum Gesundheit: Bochum, Nordrhein-Westfalen, Germany, 2019. [Google Scholar]
- Lata, P. Physical inactivity as a global risk factor for chronic diseases in women. Br. J. Sports Med. 2010, 44 (Suppl. I), i64. [Google Scholar] [CrossRef] [Green Version]
- Janauskas, A. Reasons for Physical Inactivity of disengaged students at Klaipeda University. Eur. Res. 2013, 47, 1019–1022. [Google Scholar]
- Wollesen, B.; Lorf, S.; Bischoff, L.L.; Menzel, J. Teilnahmemotivation von Männern an bewegungsorientierten Präventionsangeboten [Motivation of Men to Participate in Physical Activity Programs for Health Promotion]. Das Gesundh. 2019, 51, 361–369. [Google Scholar]
- Sudeck, G.; Lehnert, K.; Conzelmann, A. Motivbasierte Sporttypen. Auf dem Weg zur Personorientierung im zielgruppenspezifischen Freizeit- und Gesundheitssport. [Motive-based types of sport person – Towards a person-oriented approach in target group-specific leisure and health sport]. Z. Für Sportpsychol. 2011, 18, 1–17. [Google Scholar] [CrossRef]
- Concelmann, A.; Lehnert, K.; Schmid, J.; Sudeck, G. Das Berner Motiv- und Zielinventar im Freizeit- und Gesundheitssport. Anleitung zur Bestimmung von Motivprofilen und motivbasierten Sporttypen; BMZI: Bern, Switzerland, 2012. [Google Scholar]
- Rehman, H.; Kamal, A.K.; Sayani, S.; Morris, P.B.; Merchant, A.T.; Virani, S.S. Using Mobile Health (mHealth). Technology in the Management of Diabetes Mellitus, Physical Inactivity, and Smoking. Curr. Atheroscler. Rep. 2017, 19, 16. [Google Scholar] [CrossRef]
- Althoff, T.; White, R.W.; Horvitz, E. Influence of Pokémon Go on Physical Activity: Study and Implications. J. Med. Internet Res. 2016, 18, e315. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.; Steele, J.; O’Neill, L.A.; Harden, L. Pokémon Go: Mobile app user guides. Br. J. Sports Med. 2016, 55, 1505–1506. [Google Scholar] [CrossRef]
- Le-Blanc, A.G.; Chaput, J.P. Pokémon Go: A game changer for the physical inactivity crisis? Prev. Med. 2017, 101, 235–237. [Google Scholar] [CrossRef] [PubMed]
- Dubbert, P.M. Physical activity and exercise: Recent advances and current challenges. J. Consult. Clin. Psychol. 2002, 70, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Poenix, C.; Bell, S. Beyond “Move More”: Feeling the Rhythms of physical activity in mid and later-life. Soc. Sci. Med. 2019, 231, 47–54. [Google Scholar] [CrossRef]
- Warburton, D.E.R.; Shannon, B. Reflections on PA and Health: What sould we recommend? Can. J. Cardiol. 2016, 32, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Ströhle, A. Physical activity, exercise, depression and anxiety disorders. J. Neural Transm. 2008, 116, 777–784. [Google Scholar] [CrossRef]
- Groot, C.; Hooghiemstra, A.M.; Raijmakers, P.G.H.M.; van Berckel, B.N.M.; Scheltens, P.; Scherder, E.J.A.; van der Flier, W.M.; Ossenkoppele, R. The effect of physical activity on cognitive function in patients with dementia: A meta-analysis of randomized control trials. Ageing Res. Rev. 2016, 25, 13–23. [Google Scholar] [CrossRef]
- Samitz, G.; Egger, M.; Zwahlen, M. Domains of physical activity and all-cause mortality: Systematic review and dose-response meta-analysis of cohort studies. Int. J. Epidemiol. 2011, 40, 1382–1400. [Google Scholar] [CrossRef] [Green Version]
- Warbourton, D.E.R.; Nicol, C.W.; Bredin, S.S.D. Health benefits of physical activity: The evidence. CMAJ 2006, 176, 801–809. [Google Scholar] [CrossRef] [Green Version]
- WHO. Global Recommendations on Physical Activity for Health. Genf; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Krug, S.; Jordan, S.; Mensink, G.B.M.; Müters, S.; Finger, J.D.; Lampert, T. Körperliche Aktivität. Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1). [Results of the German Health Interview and Examination Survey for Adults (DEGS1)]. Bundesgesundheitsblatt 2013, 56, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Meixner, C.; Baumann, H.; Fenger, A.; Wollesen, B. Gamification in health apps to increase physical activity within families. In Proceedings of the 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain, 21–23 October 2019; pp. 15–20. [Google Scholar]
- Dallinga, J.; Janssen, M.; Van der Werf, J.; Walravens, R.; Vos, S.; Deutekom, M. Analysis of the Features Important for the Effectiveness of Physical Activity- Related Apps for Recreational Sports: Expert Panel Approach. JMIR Mhealth Uhealth 2018, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Heckhausen, J.; Heckhausen, H. (Eds.) Motivation und Handeln, 5th ed.; Motivation and action; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Kuhl, J. Motivation und Persönlichkeit. Interaktionen Psychischer Systeme; Hogrefe Verl. für Psychologie: Göttingen, Germany, 2001. [Google Scholar]
- Brand, R.; Cheval, B. Theories to Explain Exercise Motivation and Physical Inactivity: Ways of Expanding our current Theoretical Perspective. Front. Psychol. 2019, 10, 1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheffer, D.; Loerwald, D.; Mainz, D. Messung von impliziten Persönlichkeits-Systemen mit Hilfe der visuellen Testmethode des Visual Questionnaire ViQ; No. 2009-02; Arbeitspapiere der Nordakademie: Elmshorn, Germany, 2009. [Google Scholar]
- Scheffer, D.; Heckhausen, H. Eigenschaftstheorien der Motivation. In Motivation und Handeln, 5th ed.; Heckhausen, J., Heckhausen, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 45–69. [Google Scholar]
- Alahäivälä, T.; Oinas-Kukkonen, H. 32. Alahäivälä; T.; Oinas-Kukkonen, H. Understanding persuasion contexts in health gamifcation: A systematic analysis of gamified health behavior change support systems literature. Int. J. Med Inform. 2016, 96, 62–70. [Google Scholar]
- Glanz, K.; Rimer, B.K.; Viswanath, K. (Eds.) Health Behaviour and Health Education: Theory, Research and Practice; Jossey-Bass: San Francisco, CA, USA, 2008. [Google Scholar]
- King, D.; Greaves, F.; Exeter, C.; Darzi, A. Gamification: Influencing health behaviours with games. J. R. Soc. Med. 2013, 106, 76–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandelanotte, C.; Müller, A.; Short, C.; Hingle, M.; Nathan, N.; Williams, S.; Lopez, M.; Parekh, S.; Maher, C. Past, Present, and Future of eHealth and mHealth Research to Improve Physical Activity and Dietary Behaviors. J. Nutr. Educ. Behav. 2016, 48, 219–228. [Google Scholar] [CrossRef]
- Kumar, S.; Nilsen, W.J.; Abernethy, A.; Atienza, A.; Patrick, K.; Pavel, M.; Riley, W.T.; Shar, A.; Spring, B.; Spruijt-Metz, D.; et al. Mobile Health Technology Evaluation. The mhealth Evidence Workshop. J. Prev. Med. 2013, 45, 228–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsen, W.; Kumar, S.; Shar, A.; Varoquiers, C.; Wiley, T.; Riley, W.T.; Pavel, M.; Atienza, A.A. Advancing the Science of mHealth. J. Health Commun. 2012, 17 (Suppl. 1), 5–10. [Google Scholar] [CrossRef]
- Albrecht, U.-V. Rationale. In Albrecht, U.-V. (Hrsg.), Chancen und Risiken von Gesundheits-Apps (CHARISMHA). [Chances and Risks of Mobile Health Apps (CHARISMHA)]; Medizinische Hochschule Hannover: Hannover, Germany, 2016; pp. 2–6. [Google Scholar]
- Ernsting, C.; Dombrowski, S.U.; Oedekoven, M.; O’Sullivan, J.L.; Kanzler, M.; Kuhlmey, A.; Gellert, P. Using Smartphones and Health Apps to Change and Manage Health Behaviours: A Population-Based-Survey. J. Med. Internet Res. 2017, 19, 1–12. [Google Scholar] [CrossRef]
- Wang, Q.; Egelandsdal, B.; Amdam, G.; Almli, V.; Oostindjer, M. Diet and Physical Activity Apps: Perceived Effectiveness by App Users. JMIR Mhealth Uhealth 2016, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, R.; Göhner, W.; Seelig, H.; Fleitz, A.; Mahler, C.; Schittich, I. Lebensstil-integrierte sportliche Aktivität: Ergebnisse der MoVo-LISA Interventionsstudie. [Lifestyle-integrated physical exercise: Results from the MoVo-LISA intervention study]. Beweg. Und Gesundh. 2010, 26, 270–276. [Google Scholar]
- Deci, E.L.; Ryan, M. Die Selbstbestimmungstheorie der Motivation und ihre Bedeutung für die Pädagogik. Z. Für Pädagogik 1993, 39, 223–238. [Google Scholar]
- Sailer, M.; Hense, J.; Mandl, H.; Klevers, M. Psychological Perspectives on Motivation through Gamification. Interact. Des. Archit. J. 2013, 19, 28–37. [Google Scholar]
- Fahr, A.; Stevanovic, M. Der Einfluss der Persönlichkeitsstruktur auf die Nutzung von Smartphone-Apps. In Kumulierte Evidenzen; Rössler, P., Ed.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2018; pp. 119–137. [Google Scholar]
- Becker, S.; Kribben, A.; Meister, S.; Diamantidis, C.J.; Unger, N.; Mitchell, A. User profiles of a smartphone application to support drug adherence—Experiences from the iNephro project. PLoS ONE 2013, 8, e78547. [Google Scholar] [CrossRef]
- Lucht, M.; Boeker, M.; Kramer, U. Gesundheits-und Versorgungs-Apps–Hintergründe zu deren Entwicklung und Einsatz; Universitätsklinikum Freiburg im Auftrag der Techniker Krankenkasse: Freiburg, Germany, 2015. [Google Scholar]
- Bakker, D.; Kazantzis, N.; Rickwood, D.; Rickard, N. Mental Health Smartphone Apps: Review andEvidence-Based Recommendations for Future Developments. Jmir Ment. Health 2016, 3, e7. [Google Scholar] [CrossRef] [Green Version]
- Deterding, S.; Khaled, R.; Nacke, L.E.; Dixon, D. Gamification: Toward a Definition. In CHI 2011 Gamification Workshop Proceedings; CHI 2011: Vancouver, BC, Canada, 2011. [Google Scholar]
- Kapp, K.M. The Gamification of Learning and Instruction: Game-based Methods and Strategies for Training and Education; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Denden, M.; Tlili, A.; Essalmi, F.; Jemni, M. Educational gamification based on personality. In Proceedings of the IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), Hammamet, Tunisia, 30 October–3 November 2017; pp. 1399–1405. [Google Scholar]
- Sailer, M.; Hense, J.; Mayr, S.; Mandl, H. How gamification motivates: An experimental study of the effects of specific game design elements on psychological need satisfaction. Comput. Hum. Behav. 2017, 69, 371–380. [Google Scholar] [CrossRef]
- Hamari, J.; Koivisto, J.; Sarsa, H. Does Gamification Work?—A Literature Review of Empirical Studies on Gamification. In Proceedings of the 2014 47th Hawaii International Conference on System Sciences; IEEE Computer Society: Washington, DC, USA, 2014. [Google Scholar]
- Robson, K.; Plangger, K.; Kietzmann, J.H.; McCarthy, I.; Pitt, L. Is it all a game? Understanding the principles of gamification. Bus. Horiz. 2015, 58, 411–420. [Google Scholar] [CrossRef]
- Johnson, D.; Deterding, S.; Kuhn, K.A.; Staneva, A.; Stoyanov, S.; Hides, L. Gamification for health and wellbeing: A systematic review of the literature. Internet Interv. 2016, 6, 89–106. [Google Scholar] [CrossRef] [Green Version]
- Sudeck, G.; Pfeier, K. Physical activity-related health competence as an integrative objective in exercise therapy and health sports—Conception and validation of a short questionnaire. Sportwissenschaft 2016, 46, 74–87. [Google Scholar] [CrossRef]
- Deutsche Gesellschaft für Ernährung e.V. Vollwertig Essen und Trinken nach den 10 Regeln der DGE. 2019. Available online: https://www.dge.de/ernaehrungspraxis/vollwertige-ernaehrung/10-regeln-der-dge/ (accessed on 5 January 2020).
- Hagger, M.S.; Keatley, D.A.; Chan, D.K.-C. CALO-RE taxonomy of behavior change techniques. In Encyclopedia of Sport and Exercise Psychology; Eklund, R.C., Tenenbaum, G., Eds.; Sage Publications: Thousand Oaks, CA, USA, 2014; pp. 99–104. [Google Scholar]
- Wagner, P.; Singer, R. Ein Fragebogen zur Erfassung der habituellen körperlichen Aktivität verschiedener Bevölkerungsgruppen. [A questionnaire for the registration of the habitual physical activity of different groups of population]. Sportwissenschaft 2003, 33, 383–397. [Google Scholar]
- Lister, C.; West, J.H.; Cannon, B.; Sax, T.; Brodegard, D. Just a Fad? Gamification in Health and Fitness Apps. Jmir Serious Games 2014, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Mintz, Y.; Fukuoka, Y.; Goldberg, K.; Flowers, E.; Kaminsky, P.; Castillejo, A.; Aswani, A. Personalizing Mobile Fitness Apps using Reinforcement Learning; HHS Public Access: Washington, DC, USA, 2018. [Google Scholar]
- Glynn, L.G.; Hayes, P.S.; Casey, M.; Glynn, F.; Alvarez-Iglesias, A.; Newell, J.; OLaighin, G.; Heaney, D.; O’Donnell, M.; Murphy, A. Effectiveness of a smartphone application to promote physical activity in primary care: The SMART MOVE randomized controlled trial. Br. J. Gen. Pract. 2014, 64, e384–e391. [Google Scholar] [CrossRef]
- Weidner, R.; Meyer, T.; Argubi-Wollesen, A.; Wulfsberg, J.P. Towards a Modular and Wearable Support System for Industrial Production. Appl. Mech. Mater. 2016, 840, 123–131. [Google Scholar] [CrossRef]
- Paganini, S.; Baumeister, S.; Pryss, R.; Wurst, R.; Lin, J.; Kramer, L.; Sturmbauer, S.; Plaumann, K.; Schultchen, D.; Küchler, A.; et al. Qualität von Sport- und Bewegungsapp: Eine systematische Übersichtsarbeit. ASP Stuttgart: Stuttgart, Germany, 2020. [Google Scholar]
- Jia, Y.; Xu, B.; Karanam, Y.; Voida, S. Personality-target Gamification: A survey study on Personality traits and motivational affordances. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 2001–2013. [Google Scholar]
- Ferro, L.S.; Walz, S.P.; Greuter, S. Towards personalised, gamified systems: An investigation into game design, personality and playertypologies. In Proceedings of the 9th Australasian Conference on Interactive Entertainment: Matters of Life and Death, Melbourne, Australia, 30 September–1 October 2013. [Google Scholar]
- Middelweerd, A.; Mollee, J.S.; van der Wal, C.N.; Brug, J.; te Velde, S.J. Apps to promote physical activity among adults: A review and content analysis. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoeppe, S.; Alley, S.; Lippevelde, W.V.; Bray, N.A.; Williams, S.L.; Duncan, M.J.; Vandelanotte, C. Efficacy of interventions that use apps to improve diet, physical activity and sedentary behavior: A systematic review. Int. J. Behabioral Nutr. Phys. Act. 2016, 13, 127. [Google Scholar] [CrossRef] [Green Version]
- Payne, H.; Moxley, V.B.A.; MacDonald, E. Health Behaviour Theory in Physical Activity Game Apps: A content Analysis. JMIR Serious Game 2015, 3, 1–13. [Google Scholar]
- Bitrián, P.; Buil, I.; Catalán, S. Gamification in sport apps: The determinants of users’ motivation. Eur. J. Manag. Bus. Econ. 2020, 29. [Google Scholar] [CrossRef]
- Burton, N.W.; Khan, A.; Brown, W. How, where and with whom? Physical activity context preferences of three adult groups at risk of inactivity. Br. J. Sports Med. 2012, 46, 1125–1131. [Google Scholar] [CrossRef]
- Prapavessis, H.; Grove, J.R.; Eklund, R.C. Self-Presentational Issues in Competition and Sport. J. Appl. Sport Psychol. 2010, 16, 19–40. [Google Scholar] [CrossRef]
- Knaack, N. Chancen und Granzen der Bonifizierung von Gesundheitsverhalten in der Gesetzlichen Krankenversicherung: Eine theoretische und empirische Analyse. Ph.D. Thesis, Universität Dortmund, Dortmund, Germany, 2007. [Google Scholar]
Personality Trait | Fitness | More Active Lifestyle | Nature Activities | Health Sports |
---|---|---|---|---|
need for security | 23% | 21% | 24% | 22% |
information acquisition | 9% | 8% | 9% | 9% |
need for stimulation | 6% | 5% | 5% | 5% |
information processing | 41% | 45% | 42% | 44% |
Not quoted | 21% | 21% | 20% | 20% |
Chi-squared value (x2); Significant (p); Coefficient of contingency (C) | x2 = 7353 p = 0.118 C = 0.096 | x2 = 7535 p = 0.110 C = 0.097 | x2 = 3200 p = 0.525 C = 0.063 | x2 = 4163 p = 0.384 C = 0.072 |
App Feature | Fitness | More Active Lifestyle | Nature Activities | Health Sports |
---|---|---|---|---|
individualization of app content | F(5.818); p = 0.016 eta2 = 0.007 | F(15.888); p = 0.000 eta2 = 0.020 | F(3.921); p = 0.048 eta2 = 0.005 | F(5.411); p = 0.020 eta2 = 0.007 |
diaries or strategy documentation | F(4.181); p = 0.041 eta2 = 0.005 | F(22.032); p = 0.000 eta2 = 0.027 | F(13.181); p = 0.000 eta2 = 0.016 | F(12.478); p = 0.000 eta2 = 0.016 |
suggestions for activities | F(4.506); p = 0.034 eta2 = 0.006 | F(36.159); p = 0.000 eta2 = 0.044 | F(17.938); p = 0.000 eta2 = 0.022 | F(12.778); p = 0.000 eta2 = 0.016 |
connect the app with tracker or smartwatch | F(2.306); p = 0.129 eta2 = 0.003 | F(9.445); p = 0.002 eta2 = 0.012 | F(2.556); p = 0.110 eta2 = 0.003 | F(3.747); p = 0.053 eta2 = 0.005 |
information or instruction videos | F(4.617); p = 0.032 eta2 = 0.006 | F(24.998); p = 0.000 eta2 = 0.030 | F(19.048); p = 0.000 eta2 = 0.023 | F(12.566); p = 0.000 eta2 = 0.016 |
reminders, e.g., to set targets | F(8.812); p = 0.003 eta2 = 0.011 | F(33.138); p = 0.000 eta2= 0.040 | F(18.958); p = 0.000 eta2 = 0.023 | F(18.457); p = 0.000 eta2 = 0.023 |
knowledge about healthy lifestyle | F(.923); p = 0.337 eta2 = 0.001 | F(11.946); p = 0.000 eta2 = 0.015 | F(6.938); p = 0.009 eta2 = 0.009 | F(12.083); p = 0.001 eta2 = 0.015 |
connection to a health insurance company’s bonus program | F(2.505); p = 0.114 eta2 = 0.003 | F(13.370); p = 0.000 eta2 = 0.016 | F(3.563); p = 0.059 eta2 = 0.004 | F(14.127); p = 0.000 eta2 = 0.017 |
Gamification | ||||
receiving feedback | F(8.646); p = 0.003 eta2 = 0.011 | F(25.367); p = 0.000 eta2 = 0.031 | F(12.652); p = 0.000 eta2 = 0.016 | F(6.289); p = 0.012 eta2 = 0.008 |
immaterial rewards | F(5.032); p = 0.025 eta2= 0.006 | F(17.322); p = 0.000 eta2 = 0.021 | F(4.048); p = 0.045 eta2 = 0.005 | F(17.713); p = 0.000 eta2 = 0.022 |
level up | F(5.003); p = 0.026 eta2 = 0.006 | F(14.677); p = 0.000 eta2= 0.018 | F(3.303); p = 0.070 eta2= 0.004 | F(1.778); p = 0.002 eta2 = 0.183 |
monetary incentives | F(12.339); p = 0.000 eta2 = 0.015 | F(11.885); p = 0.001 eta2= 0.015 | F(4.150); p = 0.042 eta2= 0.005 | F(14.741); p = 0.000 eta2 = 0.018 |
by earning points for my performance | F(3.929); p = 0.048 eta2= 0.005 | F(23.492); p = 0.000 eta2 = 0.029 | F(2.566); p = 0.110 eta2 = 0.003 | F(12.964); p = 0.000 eta2 = 0.016 |
by monitoring my progress | F(9.084); p = 0.003 eta2 = 0.011 | F(21.869); p = 0.000 eta2 = 0.027 | F(0.84); p = 0.772 eta2 = 0.000 | F(7.706); p = 0.006 eta2 = 0.010 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meixner, C.; Baumann, H.; Wollesen, B. Personality Traits, Gamification and Features to Develop an App to Reduce Physical Inactivity. Information 2020, 11, 367. https://doi.org/10.3390/info11070367
Meixner C, Baumann H, Wollesen B. Personality Traits, Gamification and Features to Develop an App to Reduce Physical Inactivity. Information. 2020; 11(7):367. https://doi.org/10.3390/info11070367
Chicago/Turabian StyleMeixner, Charlotte, Hannes Baumann, and Bettina Wollesen. 2020. "Personality Traits, Gamification and Features to Develop an App to Reduce Physical Inactivity" Information 11, no. 7: 367. https://doi.org/10.3390/info11070367
APA StyleMeixner, C., Baumann, H., & Wollesen, B. (2020). Personality Traits, Gamification and Features to Develop an App to Reduce Physical Inactivity. Information, 11(7), 367. https://doi.org/10.3390/info11070367