Application of Multi-Criteria Decision-Making Models for the Evaluation Cultural Websites: A Framework for Comparative Analysis
Abstract
:1. Introduction
2. Framework
- Dimensions and Criteria. In this step, the dimensions and the criteria are defined. The dimensions are used for the evaluation of the website. The value of each dimension is affected by a subset of criteria. The criteria and the dimensions do not have the same importance; therefore, their weights must be calculated. For this purpose, AHP is used. The application of AHP involves setting a pair-wise comparison matrix for the dimensions and a pair-wise comparison matrix for the sub-criteria of each dimension. Then, an open-source decision-making software that implements AHP, such as ‘Priority Estimation Tool’ (PriEst) [41], could be used to estimate the weights. For the case of museum websites’ evaluation, this step is analyzed in Section 2.
- Set of alternative websites. The set of alternative websites is set (Section 3).
- Values of the Dimensions. A set of decision-makers is set in this step. The decision-makers interact with the museum websites and give value to the criteria. The final values of the criteria are estimated as a geometric mean of the corresponding values of all decision makers. The values of the dimensions are acquired as a weighted sum of the criteria. Section 4 provides an example of values of criteria and dimensions.
- MCDM models. In this step, the different MCDM models are applied. The number of MCDM models does not implementation of DEWESA. In the particular case study, five MCDM models are applied and compared (Section 5).
- Comparative Analysis. In order to compare the MCDM models, two statistical values are calculated: the Pearson correlation coefficient for making a pair-wise comparison of the values produced by the models and the Spearman’s correlation coefficient for making a pair-wise comparison of the rankings of the alternative websites (Section 6).
- Sensitivity Analysis. A sensitivity analysis is performed in order to check the consistency of the results produced by each MCDM model and evaluate the robustness of each model. The implementation of the sensitivity analysis involves using a different weighting scheme and re-calculating the final value for each alternative website using each one of the MCDM models. Then, the values and rankings of each MCDM model using the two different schemes are compared. This comparison involves calculating the Pearson correlation coefficient for comparing the values of each model using the different schemes of weights and checking the correlation of rankings. For the comparison of ranking, DEWESA checks how many identical rankings were among the rankings of each model using the different schemes and estimates the Spearman’s rho correlation for each model using the two schemes of weights. This procedure is given in detail for the comparison of SAW, WPM, TOPSIS, VIKOR, and PROMETHEE II in Section 7.
3. Dimensions and Criteria
- Usability
- Functionality
- Mobile Interaction
4. Alternative Museums’ Websites and Criteria’s Values
- A1: Louvre Museum in Paris.
- A2: British Museum in London.
- A3: Rijksmuseum in Amsterdam.
- A4: Acropolis Museum in Athens.
- A5: Del Prado Museum in Madrid.
5. Estimating Dimensions’ Values
6. Applying MCDM Models
6.1. SAW
6.2. WPM
6.3. TOPSIS
6.4. VIKOR
6.5. PROMETHEE II
7. Comparison of the MCDM Models
8. Sensitivity Analysis of the MCDM Models
- checking how many identical rankings were among the rankings of each model using the different schemes;
- estimating the Spearman’s rho correlation for each model using the two schemes of weights.
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cunnliffe, D.; Kritou, E.; Tudhope, D. Usability evaluation for museum web sites. Mus. Manag. Curatorship 2001, 19, 229–252. [Google Scholar] [CrossRef]
- Kabassi, K.; Botonis, A.; Karydis, C. Evaluating the Websites of the Museums’ Conservation Labs: The Hidden Heroes. In Proceedings of the 9th International Conference on Information, Intelligence, Systems and Applications, Zakynthos, Greece, 23–25 July 2018. [Google Scholar]
- Kabassi, Κ.; Karydis, C.; Botonis, A. AHP, Fuzzy SAW and Fuzzy WPM for the evaluation of Cultural Websites. Multimodal Technol. Interact. 2020, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Kabassi, Κ.; Botonis, A.; Karydis, C. Evaluating Websites of Specialised Cultural Content using Fuzzy Multi-Criteria Decision Making Theories. Informatica 2020, 44, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Kabassi, K.; Martinis, A. Multi-Criteria Decision Making in the Evaluation of the Thematic Museums’ Websites. In Business, Economics, Innovative Approaches to Tourism and Leisure, Proceedings of the 4th International Conference on “Innovative Approaches to Tourism and Leisure: Culture, Places and Narratives in a Sustainability Context”, Athens, Greece, 25–27 May 2017; Katsoni, V., Velander, K., Eds.; 453709_1_En (16); Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-319-67602-9. [Google Scholar]
- Kittur, J. Optimal Generation Evaluation using SAW, WP, AHP and PROMETHEE Multi-Criteria Decision Making Techniques. In Proceedings of the IEEE International Conference on Technological Advancements in Power & Energy, Kollam, India, 24–26 June 2015; pp. 304–309. [Google Scholar]
- Mulliner, E.; Malys, N.; Maliene, V. Comparative analysis of MCDM methods for the assessment of sustainable housing affordability. Omega 2016, 59, 146–156. [Google Scholar] [CrossRef]
- Widianta, M.M.D.; Rizaldi, T.; Setyohadi, D.P.S.; Riskiawan, H.Y. Comparison of Multi-Criteria Decision Support Methods (AHP, TOPSIS, SAW & PROMETHEE) for Employee Placement. J. Phys. Conf. Ser. 2018, 953, 012116. [Google Scholar] [CrossRef]
- Thor, J.; Ding, S.H.; Kamaruddin, S. Comparison of Multi Criteria Decision Making Methods from the Maintenance Alternative Selection Perspective. Int. J. Eng. Sci. 2013, 2, 27–34. [Google Scholar]
- Sałabun, W.; Wątróbski, J.; Shekhovtsov, A. Are MCDA Methods Benchmarkable? A Comparative Study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II Methods. Symmetry 2020, 12, 1549. [Google Scholar] [CrossRef]
- Kiourexidou, M.; Antonopoulos, N.; Kiourexidou, E.; Piagkou, M.; Kotsakis, R.; Natsis, K. Websites with Multimedia Content: A Heuristic Evaluation of the Medical/Anatomical Museums. Multimodal Technol. Interact. 2019, 3, 42. [Google Scholar] [CrossRef] [Green Version]
- Kabassi, Κ.; Amelio, A.; Komianos, V.; Oikonomou, K. Evaluating Museum Virtual Tours: The case study of Italy. Information 2019, 10, 351. [Google Scholar] [CrossRef] [Green Version]
- Sean, H.; Luisa, N.; David, C. A Statistical Comparison between Different Multicriteria Scaling and Weighting Combinations. Int. J. Ind. Oper. Res. 2020, 3, 6. [Google Scholar] [CrossRef]
- Nemeth, B.; Molnar, A.; Bozoki, S.; Wijaya, K.; Inotai, A.; Campbell, J.D.; Kalo, Z. Comparison of weighting methods used in multicriteria decision analysis frameworks in healthcare with focus on low- and middle-income countries. J. Comp. Effectiv. Res. 2019, 8, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Resta, G.; Dicuonzo, F.; Karacan, E.; Pastore, D. The impact of virtual tours on museum exhibitions after the onset of covid-19 restrictions: Visitor engagement and long-term perspectives. SCIRES IT SCIentific RESearch Inf. Technol. 2021, 11, 151–166. [Google Scholar]
- Vakilipour, S.; Sadeghi-Niaraki, A.; Ghodousi, M.; Choi, S.-M. Comparison between Multi-Criteria Decision-Making Methods and Evaluating the Quality of Life at Different Spatial Levels. Sustainability 2021, 13, 4067. [Google Scholar] [CrossRef]
- Sarraf, R.; McGuire, M.P. Integration and comparison of multi-criteria decision making methods in safe route planner. Expert Syst. Appl. 2020, 154, 1113399. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Zhang, N.; Wei, G. Extension of VIKOR method for decision making problem based on hesitant fuzzy set. Appl. Math. Model. 2013, 37, 4938–4947. [Google Scholar] [CrossRef]
- Banaitiene, N.; Banaitis, A.; Kaklauskas, A.; Zavadskas, E. Evaluating the life cycle of a building: A multivariant and multiple criteria approach. Omega 2008, 36, 429–441. [Google Scholar] [CrossRef]
- Monistrol, R.; Rovira, C.; Codina, L. Catalonia’s Museums Websites: Analysis and Evaluation Proposal. Available online: https://www.upf.edu/hipertextnet/en/numero-4/museos.html (accessed on 31 July 2016).
- Abounaima, M.C.; Lamrini, L.; Makhfi, N.E.L.; Ouzarf, M. Comparison by Correlation Metric the TOPSIS and ELECTRE II Multi-Criteria Decision Aid Methods: Application to the Environmental Preservation in the European Union Countries. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 1064–1074. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications A State-of-the-Art Survey; Lecture Notes in Economics and Mathematical Systems, 186; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Erdoğan, N.K.; Altınırmak, S.; Karamaşa, Ç. Comparison of multi criteria decision making (MCDM) methods with respect to performance of food firms listed in BIST. Copernic. J. Financ. Account. 2016, 5, 67–90. [Google Scholar] [CrossRef] [Green Version]
- Chitsaz, N.; Banihabib, M.E. Comparison of Different Multi Criteria Decision-Making Models in Prioritizing Flood Management Alternatives. Water Resour. Manag. 2015, 29, 2503–2525. [Google Scholar] [CrossRef]
- Mahmoud, M.R.; Garcia, L.A. Comparison of different multicriteria evaluation methods for the Red Bluff diversion dam. Environ. Model. Soft. 2000, 15, 471–478. [Google Scholar] [CrossRef]
- Opricovic, S. Multicriteria Optimization of Civil Engineering Systems. Ph.D. Thesis, Faculty of Civil Engineering, Belgrade, Serbia, 1998. [Google Scholar]
- Van Welie, M.; Klaasse, B. Evaluating Museum Websites Using Design Patterns; Technical Report Number: IR-IMSE-001; Vrije Universiteit: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Barbosa, M.G.; de Saboya, L.A.; Bevilaqua, D.V. A survey and evaluation of mobile apps in science centers and museums. J. Sci. Commun. 2021, 20, A01. [Google Scholar] [CrossRef]
- Guitouni, A.; Martel, J.M. Tentative guidelines to help choosing an appropriate MCDM method. Eur. J. Oper. Res. 1998, 109, 501–521. [Google Scholar] [CrossRef]
- Kabassi, K. Evaluating Websites of Museums: State of the Art. J. Cult. Herit. 2017, 24, 184–196. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.H. Extended VIKOR method in comparison with outranking methods. Eur. J. Oper. Res. 2007, 178, 514–529. [Google Scholar] [CrossRef]
- Pamučar, D.S.; Božanić, D.; Ranđelović, A. Multi-Criteria Decision Making: An example of sensitivity analysis. Serb. J. Manag. 2017, 12, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Brans, J.P. L’elaboration d’instruments d’aide a la decision. In L’Aide a la Decision: Nature, Instruments et Perspectives d’Avenir; Nadeau, R., Landry, M., Eds.; Le Presses de l’Universite Laval: Québec, QC, Canada, 1986; pp. 183–214. [Google Scholar]
- Brans, J.P.; Vincke, P. A Preference Ranking Organisation Method (The PROMETHEE Method for Multiple Criteria Decision-Making). Manag. Sci. 1985, 31, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Kolios, A.; Mytilinou, V.; Lozano-Minguez, E.; Salonitis, K. A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs. Energies 2016, 9, 566. [Google Scholar] [CrossRef] [Green Version]
- Preko, A.; Gyepi-Garbrah, T.F.; Arkorful, H.; Akolaa, A.A.; Quansah, F. Museum experience and satisfaction: Moderating role of visiting frequency. Int. Hosp. Rev. 2020, 34, 203–220. [Google Scholar] [CrossRef]
- Kabassi, K. Comparison of Multi Criteria Decision Making Models: Analysing the Steps in the Domain of Websites’ Evaluation. Int. J. Inf. Technol. Decis. Mak. 2021. to appear. [Google Scholar] [CrossRef]
- Kabassi, K. Evaluating Museum Using a Combination of Decision-Making Theories. J. Herit. Tour. 2019, 14, 544–560. [Google Scholar] [CrossRef]
- Zlaugotne, B.; Zihare, L.; Balode, L.; Kalnbalkite, A.; Khabdullin, A.; Blumberga, D. Multi-Criteria Decision Analysis Methods Comparison. Environ. Clim. Technol. 2020, 24, 454–471. [Google Scholar] [CrossRef]
- Sirah, S.; Mikhailov, L.; Keane, L.; John, A. PriEsT: An interactive decision support tool to estimate priorities from pair-wise comparison judgments. Inter. Trans. in Oper. Res. 2015, 22, 203–382. [Google Scholar]
- Kokaraki, N.; Hopfe, C.J.; Robinson, E.; Nikolaidou, E. Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation. Renew. Sustain. Energy Rev. 2019, 112, 991–1007. [Google Scholar] [CrossRef]
- Triantafyllou, F. Multi Criteria Decision Making Methods: A Comparative Study; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Sylaiou, S.; Killintzis, V.; Paliokas, I.; Mania, K.; Patias, P. Usability Evaluation of Virtual Museums’ Interfaces Visualization Technologies. In Proceedings of the 6th International Conference, VAMR 2014; Heraklion, Crete, Greece, 22–27 June 2014, Shumaker, R., Lackey, S., Eds.; Part II, LNCS 8526; Springer: Cham, Switzerland; pp. 124–133.
- Vassoney, E.; Mammoliti Mochet, A.; Desiderio, E.; Negro, G.; Pilloni, M.G.; Comoglio, C. Comparing Multi-Criteria Decision-Making Methods for the Assessment of Flow Release Scenarios from Small Hydropower Plants in the Alpine Area. Front. Environ. Sci. 2021, 9, 635100. [Google Scholar] [CrossRef]
- Zanakis, S.H.; Solomon, A.; Wishart, N.; Dublish, S. Multi-attribute decision making: A simulation comparison of select methods. Eur. J. Oper. Res. 1998, 107, 507–529. [Google Scholar] [CrossRef]
- Fishburn, P.C. Additive Utilities with Incomplete Product Set: Applications to Priorities and Assignments. Oper. Res. 1967, 15, 537–542. [Google Scholar] [CrossRef]
- Yazdani, M.; Graeml, F.R. VIKOR and its Applications: A State-of-the-Art Survey. Int. J. Strateg. Decis. Sci. 2014, 5, 56–83. [Google Scholar] [CrossRef] [Green Version]
- Simanaviciene, R.; Ustinovichius, L. Sensitivity Analysis for Multiple Criteria Decision Making Methods: TOPSIS and SAW. Proc. Soc. Behav. Sci. 2010, 2, 7743–7744. [Google Scholar] [CrossRef] [Green Version]
Usability (d1) | Functionality (d2) | Mobile Interaction (d3) | |
---|---|---|---|
Usability (d1) | 1 | 4.95 | 2.45 |
Functionality (d2) | 0.20 | 1 | 0.45 |
Mobile interaction (d3) | 0.41 | 2.21 | 1 |
uc1 | uc2 | uc3 | uc4 | uc5 | uc6 | uc7 | uc8 | uc9 | uc10 | uc11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
uc1 | 1.00 | 0.50 | 2.63 | 0.27 | 1.11 | 0.71 | 0.84 | 3.00 | 2.71 | 3.00 | 3.00 |
uc2 | 2.00 | 1.00 | 3.00 | 0.50 | 3.00 | 0.23 | 0.50 | 3.72 | 3.46 | 3.72 | 3.72 |
uc3 | 0.42 | 0.33 | 1.00 | 0.21 | 0.33 | 0.14 | 0.27 | 2.00 | 2.00 | 2.00 | 2.00 |
uc4 | 3.72 | 2.00 | 4.68 | 1.00 | 4.23 | 0.93 | 3.22 | 4.73 | 4.86 | 4.73 | 4.73 |
uc5 | 0.90 | 0.33 | 3.00 | 0.24 | 1.00 | 0.34 | 0.37 | 3.00 | 2.71 | 3.00 | 3.00 |
uc6 | 1.41 | 4.28 | 6.96 | 1.07 | 3 | 1.00 | 4.95 | 1.86 | 6.65 | 5.66 | 7.74 |
uc7 | 1.19 | 2.00 | 3.66 | 0.33 | 2.71 | 0.20 | 1.00 | 5.00 | 6.00 | 6.74 | 6.74 |
uc8 | 0.33 | 0.27 | 0.50 | 0.21 | 0.33 | 0.54 | 0.20 | 1.00 | 2.21 | 2.00 | 0.45 |
uc9 | 0.37 | 0.29 | 0.50 | 0.23 | 0.37 | 0.15 | 0.17 | 0.45 | 1.00 | 2.00 | 0.45 |
uc10 | 0.33 | 0.27 | 0.50 | 0.21 | 0.33 | 0.18 | 0.15 | 0.50 | 0.50 | 1.00 | 0.45 |
uc11 | 0.33 | 0.27 | 0.50 | 0.21 | 0.33 | 0.13 | 0.15 | 2.21 | 2.21 | 2.21 | 1.00 |
fc1 | fc2 | fc3 | fc4 | fc5 | fc6 | fc7 | |
---|---|---|---|---|---|---|---|
fc1 | 1.00 | 4.12 | 4.12 | 2.00 | 4.43 | 3.00 | 3.00 |
fc2 | 0.24 | 1.00 | 0.22 | 2.00 | 2.00 | 2.00 | 2.00 |
fc3 | 0.24 | 4.47 | 1.00 | 4 | 3.46 | 3.22 | 3.22 |
fc4 | 0.50 | 0.50 | 0.25 | 1.00 | 0.50 | 0.50 | 1 |
fc5 | 0.23 | 0.50 | 0.29 | 2.00 | 1.00 | 0.45 | 2.21 |
fc6 | 0.33 | 0.50 | 0.31 | 2.00 | 2.21 | 1.00 | 2.00 |
fc7 | 0.33 | 0.50 | 0.31 | 1 | 0.45 | 0.50 | 1.00 |
mc1 | mc2 | mc3 | |
---|---|---|---|
mc1 | 1.00 | 4.61 | 4.95 |
mc2 | 0.22 | 1.00 | 2 |
mc3 | 0.20 | 0.5 | 1.00 |
A1 | A2 | A3 | A4 | A5 | |
---|---|---|---|---|---|
uc1 | 7.21 | 8.40 | 8.03 | 8.18 | 7.43 |
uc2 | 7.42 | 7.87 | 8.00 | 7.85 | 7.77 |
uc3 | 7.42 | 7.87 | 7.07 | 8.15 | 7.77 |
uc4 | 7.21 | 8.53 | 9.00 | 8.17 | 7.43 |
uc5 | 5.89 | 4.36 | 7.68 | 6.97 | 6.75 |
uc6 | 5.89 | 4.36 | 5.79 | 6.60 | 6.21 |
uc7 | 7.42 | 7.65 | 6.00 | 8.40 | 7.62 |
uc8 | 6.88 | 7.65 | 8.37 | 7.65 | 5.79 |
uc9 | 7.75 | 7.65 | 8.75 | 7.56 | 6.75 |
uc10 | 7.78 | 6.98 | 8.28 | 7.14 | 6.01 |
uc11 | 7.53 | 7.77 | 7.04 | 7.84 | 6.87 |
fc1 | 7.54 | 8.29 | 6.63 | 7.07 | 5.98 |
fc2 | 8.43 | 7.52 | 8.88 | 7.63 | 6.30 |
fc3 | 7.88 | 7.52 | 8.53 | 7.03 | 6.40 |
fc4 | 6.87 | 6.98 | 7.18 | 6.52 | 5.10 |
fc5 | 8.75 | 7.77 | 7.63 | 7.65 | 7.10 |
fc6 | 7.49 | 6.54 | 8.17 | 7.93 | 7.65 |
fc7 | 8.75 | 7.74 | 7.84 | 7.73 | 6.41 |
mc1 | 7.26 | 7.77 | 7.95 | 7.82 | 7.85 |
mc2 | 8.09 | 7.30 | 6.49 | 7.62 | 7.31 |
mc3 | 8.75 | 7.65 | 6.95 | 7.75 | 7.40 |
A1 | A2 | A3 | A4 | A5 | |
---|---|---|---|---|---|
x1 | 6.891 | 6.908 | 7.360 | 7.642 | 7.037 |
x2 | 7.842 | 7.700 | 7.675 | 7.263 | 6.341 |
x3 | 7.586 | 7.667 | 7.566 | 7.777 | 7.700 |
A1 | A2 | A3 | A4 | A5 | |
---|---|---|---|---|---|
SAW-values | 7.187 | 7.201 | 7.451 | 7.631 | 7.125 |
SAW-ranking | 4 | 3 | 2 | 1 | 5 |
WPM-values | 7.177 | 7.192 | 7.450 | 7.630 | 7.114 |
WPM-ranking | 4 | 3 | 2 | 1 | 5 |
TOPSIS-values | 0.280 | 0.268 | 0.643 | 0.873 | 0.189 |
TOPSIS-ranking | 3 | 4 | 2 | 1 | 5 |
VIKOR-values (Q) | 1 | 0.924 | 0.471 | 0 | 0.808 |
VIKOR-values (S) | 0.854 | 0.752 | 0.506 | 0.047 | 0.715 |
VIKOR-values (R) | 0.619 | 0.605 | 0.26 | 0.047 | 0.499 |
VIKOR-ranking | 5 | 4 | 2 | 1 | 3 |
PROMETHEE II-values | −0.628 | −0.249 | 0.05 | 0.819 | 0.009 |
PROMETHEE II-ranking | 5 | 4 | 2 | 1 | 3 |
SAW | WPM | TOPSIS | VIKOR | PROMETHEE II | |
---|---|---|---|---|---|
SAW | 1 | 1 | 0.999 | −0.952 | 0.818 |
WPM | - | 1 | 0.999 | −0.951 | 0.816 |
TOPSIS | - | - | 1 | −0.950 | 0.808 |
VIKOR | - | - | - | 1 | −0.947 |
PROMETHEE II | - | - | - | - | 1 |
SAW | WPM | TOPSIS | VIKOR | PROMETHEE II | |
---|---|---|---|---|---|
SAW | 1 | 1 | 0.90 | 0.70 | 0.70 |
WPM | - | 1 | 0.90 | 0.70 | 0.70 |
TOPSIS | - | - | 1 | 0.60 | 0.60 |
VIKOR | - | - | - | 1 | 1 |
PROMETHEE II | - | - | - | - | 1 |
A1 | A2 | A3 | A4 | A5 | |
---|---|---|---|---|---|
SAW-values | 7.440 | 7.425 | 7.533 | 7.561 | 7.026 |
SAW-ranking | 3 | 4 | 2 | 1 | 5 |
WPM-values | 7.429 | 7.416 | 7.532 | 7.558 | 7.004 |
WPM-ranking | 3 | 4 | 2 | 1 | 5 |
TOPSIS-values | 0.660 | 0.643 | 0.784 | 0.676 | 0.109 |
TOPSIS-ranking | 3 | 4 | 1 | 2 | 5 |
VIKOR-values (Q) | 0.926 | 0.82 | 0.808 | 0 | 1 |
VIKOR-values (S) | 0.333 | 0.325 | 0.333 | 0.128 | 0.333 |
VIKOR-values (R) | 0.634 | 0.531 | 0.495 | 0.128 | 0.723 |
VIKOR-ranking | 2 | 3 | 4 | 5 | 1 |
PROMETHEE II-values | −0.167 | −0.001 | −0.167 | 0.501 | −0.167 |
PROMETHEE II-ranking | 5 | 2 | 3 | 1 | 4 |
Pearson Correlation Coefficient | Percentage of Identical Rankings | Spearman’s Rho | |
---|---|---|---|
SAW | 0.715 | 60% | 0.900 |
WPM | 0.721 | 60% | 0.900 |
TOPSIS | 0.568 | 60% | 0.900 |
VIKOR | 0.894 | 0% | −0.700 |
PROMETHEE II | 0.822 | 40% | 0.700 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabassi, K. Application of Multi-Criteria Decision-Making Models for the Evaluation Cultural Websites: A Framework for Comparative Analysis. Information 2021, 12, 407. https://doi.org/10.3390/info12100407
Kabassi K. Application of Multi-Criteria Decision-Making Models for the Evaluation Cultural Websites: A Framework for Comparative Analysis. Information. 2021; 12(10):407. https://doi.org/10.3390/info12100407
Chicago/Turabian StyleKabassi, Katerina. 2021. "Application of Multi-Criteria Decision-Making Models for the Evaluation Cultural Websites: A Framework for Comparative Analysis" Information 12, no. 10: 407. https://doi.org/10.3390/info12100407
APA StyleKabassi, K. (2021). Application of Multi-Criteria Decision-Making Models for the Evaluation Cultural Websites: A Framework for Comparative Analysis. Information, 12(10), 407. https://doi.org/10.3390/info12100407