Impulse Buying Behaviors in Live Streaming Commerce Based on the Stimulus-Organism-Response Framework
Abstract
:1. Introduction
- We aim to study the key factors that promote consumers’ impulsive buying behavior in live streaming commerce.
- We intend to introduce the theoretical framework and concepts of S-O-R in the research of live streaming commerce to improve the understanding from a theoretical and a practical overview.
2. Literature Review
2.1. Live Streaming Commerce
2.2. Urge to Buy Impulsively
2.3. S-O-R Framework
2.4. Proposed Model and Development of Hypotheses
3. Research Method
4. Research Results
4.1. Assessment of the Measurement Model
4.2. Analysis of the Structural Model
5. Conclusions
5.1. Conclusions
5.2. Implications for Research
5.3. Implications for Practice
5.4. Limitations and Future Researches
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Sun, Y.; Shao, X.; Li, X.; Guo, Y.; Nie, K. How live streaming influences purchase intentions in social commerce: An IT affordance perspective. Electron. Commer. Res. Appl. 2019, 37, 100886. [Google Scholar] [CrossRef]
- China Internet Networking Information Center. The 47th China Statistical Report on Internet Development. 2021. Available online: http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/202102/t20210203_71361.htm (accessed on 1 April 2021).
- Chen, A.; Lu, Y.; Wang, B. Customers’ purchase decision-making process in social commerce: A social learning perspective. Int. J. Inf. Manag. 2017, 37, 627–638. [Google Scholar] [CrossRef]
- Liu, G.H.; Sun, M.; Lee, N.C.A. How can live streamers enhance viewer engagement in eCommerce streaming? In Proceedings of the 54th Hawaii International Conference on System Sciences, Grand Wailea, Maui, HI, USA, 5–8 January 2021; p. 3079. [Google Scholar]
- Wongkitrungrueng, A.; Assarut, N. The role of live streaming in building consumer trust and engagement with social commerce sellers. J. Bus. Res. 2018, 117. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Cai, J. How attachment affects user stickiness on live streaming platforms: A socio-technical approach perspective. J. Retail. Consum. Serv. 2021, 60, 102478. [Google Scholar] [CrossRef]
- Yamawaki, M.A.C.; Sarfati, G. The millennials luxury brand engagement on social media: A comparative study of brazilians and italians. Rev. Negócios Int. Internext 2019, 14, 14–30. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.C.; Chen, C.J.; Chiang, T.W. Forming the Strategy for Live Streaming e-Commerce: An Action Research. In Proceedings of the 54th Hawaii International Conference on System Sciences, Grand Wailea, Maui, HI, USA, 5–8 January 2021; p. 2770. Available online: https://10.24251/HICSS.2021.338 (accessed on 5 January 2021).
- Yin, S. A Study on the Influence of E-commerce Live Streaming on Consumer’s Purchase Intentions in Mobile Internet. In International Conference on Human-Computer Interaction; Springer: Cham, Switzerland, 2020; pp. 720–732. [Google Scholar] [CrossRef]
- Hu, M.; Chaudhry, S.S. Enhancing consumer engagement in e-commerce live streaming via relational bonds. Internet Res. 2020, 30. [Google Scholar] [CrossRef]
- Saura, J.R. Using Data Sciences in Digital Marketing: Framework, methods, and performance metrics. J. Innov. Knowl. 2020, 6, 92–102. [Google Scholar] [CrossRef]
- Cai, J.; Wohn, D.Y. Live streaming commerce: Uses and gratifications approach to understanding consumers’ motivations. In Proceedings of the 52nd Hawaii International Conference on System Sciences, Grand Wailea, Maui, HI, USA, 8–11 January 2019. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Wu, J.H.; Li, Q. What Drives Consumer Shopping Behavior in Live Streaming Commerce? J. Electron. Commer. Res. 2020, 21, 144–167. [Google Scholar]
- De Veirman, M.; Cauberghe, V.; Hudders, L. Marketing through Instagram influencers: The impact of number of followers and product divergence on brand attitude. Int. J. Advert. 2017, 36, 798–828. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Zhang, M.; Wang, Y. Why do audiences choose to keep watching on live video streaming platforms? An explanation of dual identification framework. Comput. Hum. Behav. 2017, 75, 594–606. [Google Scholar] [CrossRef]
- Kang, K.; Lu, J.; Guo, L.; Li, W. The dynamic effect of interactivity on customer engagement behavior through tie strength: Evidence from live streaming commerce platforms. Int. J. Inf. Manag. 2020, 56, 102251. [Google Scholar] [CrossRef]
- Hilvert-Bruce, Z.; Neill, J.T.; Sjöblom, M.; Hamari, J. Social motivations of live-streaming viewer engagement on Twitch. Comput. Hum. Behav. 2018, 84, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Stern, H. The significance of impulse buying today. J. Mark. 1962, 26, 59–62. [Google Scholar] [CrossRef]
- Chan, T.K.; Cheung, C.M.; Lee, Z.W. The state of online impulse-buying research: A literature analysis. Inf. Manag. 2017, 54, 204–217. [Google Scholar] [CrossRef]
- Parboteeah, D.V.; Valacich, J.S.; Wells, J.D. The influence of website characteristics on a consumer’s urge to buy impulsively. Inf. Syst. Res. 2009, 20, 60–78. [Google Scholar] [CrossRef]
- Applebaum, W. Studying customer behavior in retail stores. J. Mark. 1951, 16, 172–178. [Google Scholar] [CrossRef]
- Verhagen, T.; van Dolen, W. The influence of online store beliefs on consumer online impulse buying: A model and empirical application. Inf. Manag. 2011, 48, 320–327. [Google Scholar] [CrossRef]
- Akram, U.; Hui, P.; Khan, M.K.; Tanveer, Y.; Mehmood, K.; Ahmad, W. How website quality affects online impulse buying: Moderating effects of sales promotion and credit card use. Asia Pac. J. Mark. Logist. 2018, 30. [Google Scholar] [CrossRef]
- Koufaris, M. Applying the technology acceptance model and flow theory to online consumer behavior. Inf. Syst. Res. 2002, 13, 205–223. [Google Scholar] [CrossRef] [Green Version]
- Wells, J.D.; Parboteeah, V.; Valacich, J.S. Online impulse buying: Understanding the interplay between consumer impulsiveness and website quality. J. Assoc. Inf. Syst. 2011, 12, 3. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, H.; Hu, F. Website attributes in urging online impulse purchase: An empirical investigation on consumer perceptions. Decis. Support Syst. 2013, 55, 829–837. [Google Scholar] [CrossRef]
- Huang, L.T. Flow and social capital theory in online impulse buying. J. Bus. Res. 2016, 69, 2277–2283. [Google Scholar] [CrossRef]
- Xiang, L.; Zheng, X.; Lee, M.K.; Zhao, D. Exploring consumers’ impulse buying behavior on social commerce platform: The role of parasocial interaction. Int. J. Inf. Manag. 2016, 36, 333–347. [Google Scholar] [CrossRef]
- Lou, C.; Yuan, S. Influencer marketing: How message value and credibility affect consumer trust of branded content on social media. J. Interact. Advert. 2019, 19, 58–73. [Google Scholar] [CrossRef]
- Sokolova, K.; Kefi, H. Instagram and YouTube bloggers promote it, why should I buy? How credibility and parasocial interaction influence purchase intentions. J. Retail. Consum. Serv. 2020, 53. [Google Scholar] [CrossRef]
- Song, H.G.; Chung, N.; Koo, C. Impulsive Buying Behavior of Restaurant Products in Social Commerce: A Role of Serendipity and Scarcity Message. In Proceedings of the PACIS 2015: Pacific Asia Conference on Information Systems, Singapore, 5–9 July 2015. [Google Scholar]
- Rook, D.W. The buying impulse. J. Consum. Res. 1987, 14, 189–199. [Google Scholar] [CrossRef]
- Zafar, A.U.; Qiu, J.; Li, Y.; Wang, J.; Shahzad, M. The impact of social media celebrities’ posts and contextual interactions on impulse buying in social commerce. Comput. Hum. Behav. 2019, 115, 106178. [Google Scholar] [CrossRef]
- Woodworth, R.S. Psychology, 2nd ed.; Henry Holt: New York, NY, USA, 1929. [Google Scholar]
- Mehrabian, A.; Russell, J.A. An Approach to Environmental Psychology; The MIT Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Donovan, R.; Rossiter, J. Store atmosphere: An environmental psychology approach. J. Retail. 1982, 58, 34–57. [Google Scholar]
- Fiore, A.M.; Kim, J. An integrative framework capturing experiential and utilitarian shopping experience. Int. J. Retail. Distrib. Manag. 2007, 35. [Google Scholar] [CrossRef] [Green Version]
- Belk, R.W. An exploratory assessment of situational effects in buyer behavior. J. Mark. Res. 1974, 11, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.; Cho, H. Fostering parasocial relationships with celebrities on social media: Implications for celebrity endorsement. Psychol. Mark. 2017, 34, 481–495. [Google Scholar] [CrossRef]
- Berne-Manero, C.; Marzo-Navarro, M. Exploring how influencer and relationship marketing serve corporate sustainability. Sustainability 2020, 12, 4392. [Google Scholar] [CrossRef]
- Moldovan, S.; Goldenberg, J.; Chattopadhyay, A. The different roles of product originality and usefulness in generating word-of-mouth. Int. J. Res. Mark. 2011, 28, 109–119. [Google Scholar] [CrossRef]
- Li, G.; Zhang, R.; Wang, C. The role of product originality, usefulness and motivated consumer innovativeness in new product adoption intentions. J. Prod. Innov. Manag. 2015, 32, 214–223. [Google Scholar] [CrossRef]
- Gupta, S.; Kim, H.W. Value-driven Internet shopping: The mental accounting theory perspective. Psychol. Mark. 2010, 27, 13–35. [Google Scholar] [CrossRef]
- Lin, S.W.; Lo, L.Y.S. Evoking online consumer impulse buying through virtual layout schemes. Behav. Inf. Technol. 2016, 35, 38–56. [Google Scholar] [CrossRef]
- Huang, W.; Chien, C.Y. Consumer behavior analysis with fruit group-buying. Int. J. Intell. Technol. Appl. Stat. 2011, 4, 95–107. [Google Scholar] [CrossRef]
- Kim, A.J.; Johnson, K.K. Power of consumers using social media: Examining the influences of brand-related user-generated content on Facebook. Comput. Hum. Behav. 2016, 58, 98–108. [Google Scholar] [CrossRef]
- Chang, H.H.; Chen, S.W. The impact of online store environment cues on purchase intention: Trust and perceived risk as a mediator. Online Inf. Rev. 2008, 32. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.H. Beyond the credibility of electronic word of mouth: Exploring eWOM adoption on social networking sites from affective and curiosity perspectives. Int. J. Electron. Commer. 2014, 18, 67–102. [Google Scholar] [CrossRef]
- Kamboj, S.; Sarmah, B.; Gupta, S.; Dwivedi, Y. Examining branding co-creation in brand communities on social media: Applying the paradigm of Stimulus-Organism-Response. Int. J. Inf. Manag. 2018, 39, 169–185. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.C.; Yao, J.Y. What drives impulse buying behaviors in a mobile auction? The perspective of the Stimulus-Organism-Response model. Telemat. Inform. 2018, 35, 1249–1262. [Google Scholar] [CrossRef]
- To, P.L.; Liao, C.; Lin, T.H. Shopping motivations on Internet: A study based on utilitarian and hedonic value. Technovation 2007, 27, 774–787. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Tamilmani, K.; Williams, M.D.; Lal, B. Adoption of M-commerce: Examining factors affecting intention and behaviour of Indian consumers. Int. J. Indian Cult. Bus. Manag. 2014, 8, 345–360. [Google Scholar] [CrossRef]
- Chen, C.C.; Chang, Y.C. What drives purchase intention on Airbnb? Perspectives of consumer reviews, information quality, and media richness. Telemat. Inform. 2018, 35, 1512–1523. [Google Scholar] [CrossRef]
- Bergkvist, L.; Zhou, K.Q. Celebrity endorsements: A literature review and research agenda. Int. J. Advert. 2016, 35, 642–663. [Google Scholar] [CrossRef]
- Park, H.J.; Lin, L.M. The effects of match-ups on the consumer attitudes toward internet celebrities and their live streaming contents in the context of product endorsement. J. Retail. Consum. Serv. 2020, 52, 101934. [Google Scholar] [CrossRef]
- Gan, C.; Wang, W. The influence of perceived value on purchase intention in social commerce context. Internet Res. 2017, 27, 772–785. [Google Scholar] [CrossRef]
- Yu, J.; Lee, H.; Ha, I.; Zo, H. User acceptance of media tablets: An empirical examination of perceived value. Telemat. Inform. 2017, 34, 206–223. [Google Scholar] [CrossRef]
- Zhu, D.H.; Wang, Y.W.; Chang, Y.P. The influence of online cross-recommendation on consumers’ instant cross-buying intention: The moderating role of decision-making difficulty. Internet Res. 2018, 28. [Google Scholar] [CrossRef]
- Lee, C.H.; Chen, C.W.D.; Huang, S.F.; Chang, Y.T.; Demirci, S. Exploring consumers’ impulse buying behavior on online apparel websites: An empirical investigation on consumer perceptions. Int. J. Electron. Commer. Stud. 2021, 12. [Google Scholar] [CrossRef]
- Chea, S.; Luo, M.M. Post-adoption behaviors of e-service customers: The interplay of cognition and emotion. Int. J. Electron. Commer. 2008, 12, 29–56. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Men, J.; Yang, F.; Gong, X. Understanding impulse buying in mobile commerce: An investigation into hedonic and utilitarian browsing. Int. J. Inf. Manag. 2019, 48, 151–160. [Google Scholar] [CrossRef]
- Wu, L.; Chen, K.W.; Chiu, M.L. Defining key drivers of online impulse purchasing: A perspective of both impulse shoppers and system users. Int. J. Inf. Manag. 2016, 36, 284–296. [Google Scholar] [CrossRef]
- Holbrook, M.B.; Batra, R. Assessing the role of emotions as mediators of consumer responses to advertising. J. Consum. Res. 1987, 14, 404–420. [Google Scholar] [CrossRef]
- Kim, J.H.; Lennon, S. Music and amount of information: Do they matter in an online apparel setting? Int. Rev. Retail Distrib. Consum. Res. 2012, 22, 55–82. [Google Scholar] [CrossRef]
- Zhou, R.; Feng, C. Difference between leisure and work contexts: The roles of perceived enjoyment and perceived usefulness in predicting mobile video calling use acceptance. Front. Psychol. 2017, 8, 350. [Google Scholar] [CrossRef] [Green Version]
- Shen, K.N.; Khalifa, M. System design effects on online impulse buying. Internet Res. 2012, 22. [Google Scholar] [CrossRef] [Green Version]
- Chin, W.W. The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Chen, Y.; Lu, Y.; Wang, B.; Pan, Z. How do product recommendations affect impulse buying? An empirical study on WeChat social commerce. Inf. Manag. 2019, 56, 236–248. [Google Scholar] [CrossRef]
- Parboteeah, D.V.; Taylor, D.C.; Barber, N.A. Exploring impulse purchasing of wine in the online environment. J. Wine Res. 2016, 27, 322–339. [Google Scholar] [CrossRef]
- Zhang, T.; Tao, D.; Qu, X.; Zhang, X.; Zeng, J.; Zhu, H.; Zhu, H. Automated vehicle acceptance in China: Social influence and initial trust are key determinants. Transp. Res. Part C Emerg. Technol. 2020, 112, 220–233. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Plan. 2013, 46, 1–12. [Google Scholar] [CrossRef]
- Campbell, D.T.; Fiske, D.W. Convergent and discriminant validation by the multitrait-multimethod matrix. Psychol. Bull. 1959, 56, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common Method Bias in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Falk, R.F.; Miller, N.B. A Primer for Soft Modeling; University of Akron Press: Akron, OH, USA, 1992. [Google Scholar]
- Wang, X.; Tajvidi, M.; Lin, X.; Hajli, N. Towards an ethical and trustworthy social commerce community for brand value co-creation: A trust-commitment perspective. J. Bus. Ethics 2020, 167, 137–152. [Google Scholar] [CrossRef]
- Reysen, S. Construction of a new scale: The Reysen likability scale. Soc. Behav. Personal. Int. J. 2005, 33, 201–208. [Google Scholar] [CrossRef]
- Xiao, M.; Wang, R.; Chan-Olmsted, S. Factors affecting YouTube influencer marketing credibility: A heuristic-systematic model. J. Media Bus. Stud. 2018, 15, 188–213. [Google Scholar] [CrossRef]
- Ohanian, R. Construction and validation of a scale to measure celebrity endorsers’ perceived expertise, trustworthiness, and attractiveness. J. Advert. 1990, 19, 39–52. [Google Scholar] [CrossRef]
- Sheng, M.L.; Teo, T.S. Product attributes and brand equity in the mobile domain: The mediating role of customer experience. Int. J. Inf. Manag. 2012, 32, 139–146. [Google Scholar] [CrossRef]
- Chung, K.H.; Shin, J.I. The antecedents and consequents of relationship quality in internet shopping. Asia Pac. J. Mark. Logist. 2010, 22. [Google Scholar] [CrossRef]
- Zhang, M.; Luo, M.; Nie, R.; Zhang, Y. Technical attributes, health attribute, consumer attributes and their roles in adoption intention of healthcare wearable technology. Int. J. Med. Inform. 2017, 108, 97–109. [Google Scholar] [CrossRef]
- Park, E.J.; Kim, E.Y.; Funches, V.M.; Foxx, W. Apparel product attributes, web browsing, and e-impulse buying on shopping websites. J. Bus. Res. 2012, 65, 1583–1589. [Google Scholar] [CrossRef]
Characteristics | Freq. | Percent (%) | Characteristics | Freq. | Percent (%) |
---|---|---|---|---|---|
Gender | Year of Birth | ||||
Female | 274 | 63.3 | Before 1979 | 26 | 6.0 |
Male | 159 | 36.7 | 1980~1994 | 98 | 22.6 |
Education | After 1995 | 309 | 71.4 | ||
High school or below | 57 | 13.2 | Job tenure | ||
Junior college | 96 | 22.2 | ≤2 | 253 | 58.4 |
University | 234 | 54.0 | 2 < & ≤ 5 | 102 | 23.6 |
Graduate school or above | 46 | 10.6 | 5 < & ≤ 10 | 49 | 11.3 |
Monthly Income | >10 | 29 | 6.7 | ||
below 3000 | 168 | 38.8 | Frequency of Shopping | ||
3000~8000 | 200 | 46.2 | Several Times | 317 | 73.2 |
8000~15,000 | 55 | 12.7 | Once per Month | 76 | 17.6 |
above 15,000 | 10 | 2.3 | Once per Week | 40 | 9.2 |
Constructs | Items | Loadings | t-Value | Average Variance Extracted | Composite Reliability | Cronbach’s Alpha |
---|---|---|---|---|---|---|
Attractiveness | ATT1 | 0.819 | 30.263 | 0.692 | 0.918 | 0.889 |
ATT2 | 0.862 | 47.632 | ||||
ATT3 | 0.838 | 31.463 | ||||
ATT4 | 0.836 | 28.296 | ||||
ATT5 | 0.803 | 26.050 | ||||
Trustworthiness | TRU1 | 0.904 | 56.284 | 0.852 | 0.959 | 0.942 |
TRU2 | 0.933 | 91.795 | ||||
TRU3 | 0.948 | 100.915 | ||||
TRU4 | 0.906 | 59.651 | ||||
Expertise | EXP1 | 0.868 | 40.614 | 0.738 | 0.918 | 0.882 |
EXP2 | 0.887 | 42.246 | ||||
EXP3 | 0.866 | 35.235 | ||||
EXP4 | 0.814 | 34.300 | ||||
Product Usefulness | PU1 | 0.779 | 22.090 | 0.680 | 0.864 | 0.764 |
PU2 | 0.810 | 22.467 | ||||
PU3 | 0.881 | 52.449 | ||||
Purchase Convenience | PC1 | 0.842 | 33.863 | 0.681 | 0.914 | 0.880 |
PC2 | 0.867 | 37.635 | ||||
PC3 | 0.891 | 53.574 | ||||
PC4 | 0.865 | 13.849 | ||||
PC5 | 0.843 | 39.030 | ||||
Product Price | PP1 | 0.877 | 51.842 | 0.810 | 0.928 | 0.883 |
PP2 | 0.906 | 45.963 | ||||
PP3 | 0.917 | 72.468 | ||||
Perceived Enjoyment | PerE1 | 0.847 | 38.982 | 0.745 | 0.936 | 0.914 |
PerE2 | 0.874 | 51.464 | ||||
PerE3 | 0.872 | 41.040 | ||||
PerE4 | 0.866 | 44.097 | ||||
PerE5 | 0.857 | 34.998 | ||||
Perceived Usefulness | PerU1 | 0.844 | 29.692 | 0.752 | 0.938 | 0.917 |
PerU2 | 0.844 | 35.465 | ||||
PerU3 | 0.899 | 48.894 | ||||
PerU4 | 0.890 | 45.383 | ||||
PerU5 | 0.857 | 37.480 | ||||
Urge to Buy Impulsively | IB1 | 0.732 | 16.198 | 0.654 | 0.904 | 0.867 |
IB2 | 0.862 | 44.282 | ||||
IB3 | 0.872 | 43.862 | ||||
IB4 | 0.813 | 28.532 | ||||
IB5 | 0.754 | 19.975 |
ATT | TRU | EXP | PU | PC | PP | PerE | PerU | UBI | |
---|---|---|---|---|---|---|---|---|---|
Attractiveness(ATT) | 0.832 | ||||||||
Trustworthiness(TRU) | 0.733 | 0.923 | |||||||
Expertise(EXP) | 0.682 | 0.763 | 0.859 | ||||||
Product Usefulness(PU) | 0.596 | 0.583 | 0.579 | 0.825 | |||||
Purchase Convenience(PC) | 0.522 | 0.418 | 0.505 | 0.555 | 0.825 | ||||
Product Price(PP) | 0.566 | 0.560 | 0.546 | 0.640 | 0.579 | 0.900 | |||
Perceived Enjoyment(PerE) | 0.691 | 0.623 | 0.658 | 0.596 | 0.570 | 0.619 | 0.863 | ||
Perceived Usefulness(PerU) | 0.638 | 0.530 | 0.594 | 0.633 | 0.603 | 0.609 | 0.783 | 0.867 | |
Urge to Buy Impulsively(UBI) | 0.516 | 0.501 | 0.505 | 0.450 | 0.424 | 0.410 | 0.662 | 0.563 | 0.809 |
Path Coefficient | t Value | Result | |
---|---|---|---|
H1: Attractiveness --> Perceived Enjoyment | 0.423 | 5.617 *** | support |
H2: Trustworthiness --> Perceived Enjoyment | 0.074 | 0.951 | not support |
H3: Expertise --> Perceived Enjoyment | 0.313 | 4.139 *** | support |
H4: Product Usefulness --> Perceived Usefulness | 0.178 | 2.434 * | support |
H5: Purchase Convenience --> Perceived Usefulness | 0.152 | 2.403 * | support |
H6: Product Price --> Perceived Usefulness | 0.068 | 0.968 | not support |
H7: Perceived Usefulness --> Urge to Buy Impulsively | 0.117 | 1.104 | not support |
H8: Perceived Usefulness --> Perceived Enjoyment | 0.548 | 6.953 *** | support |
H9: Perceived Enjoyment --> Urge to Buy Impulsively | 0.570 | 6.144 *** | support |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-H.; Chen, C.-W. Impulse Buying Behaviors in Live Streaming Commerce Based on the Stimulus-Organism-Response Framework. Information 2021, 12, 241. https://doi.org/10.3390/info12060241
Lee C-H, Chen C-W. Impulse Buying Behaviors in Live Streaming Commerce Based on the Stimulus-Organism-Response Framework. Information. 2021; 12(6):241. https://doi.org/10.3390/info12060241
Chicago/Turabian StyleLee, Chao-Hsing, and Chien-Wen Chen. 2021. "Impulse Buying Behaviors in Live Streaming Commerce Based on the Stimulus-Organism-Response Framework" Information 12, no. 6: 241. https://doi.org/10.3390/info12060241
APA StyleLee, C. -H., & Chen, C. -W. (2021). Impulse Buying Behaviors in Live Streaming Commerce Based on the Stimulus-Organism-Response Framework. Information, 12(6), 241. https://doi.org/10.3390/info12060241