Delta: A Modular Ontology Evaluation System
Abstract
:1. Introduction
2. Related Work
3. System Architecture
3.1. The Graphical User Interface
3.2. The Backend
3.2.1. Ontology Statistics
3.2.2. Ontology Metrics
3.2.3. Pitfalls
- Critical—the most severe;
- Important;
- Minor—with the lowest impact.
- Missing Annotations: This pitfall detects an ontology element that fails to provide human-readable annotations often attached to it. Consequently, ontology elements lack annotation properties that label them or define them;
- Creating Unconnected Ontology Elements: This pitfall identifies ontology elements (classes, object properties, and datatype properties) that are created isolated, with no relation to the rest of the ontology.
3.2.4. Extensibility
3.3. Data Storage
4. Application of Our Framework on Ontology Evaluation
- ○
- Pizza Ontology (PO): Pizza ontology is a well-known ontology focusing on pizzas and their topics. It includes 100 classes and 20 properties;
- ○
- Music Ontology (MO): The Music Ontology provides a model for publishing structured music-related data. It contains 54 classes and 153 properties;
- ○
- Friend of a Friend (FOAF): FOAF ontology describes persons, their activities, and their relations to other people and objects. It consists of 22 classes and more than 80 properties;
- ○
- Dublin Core (DC): Dublin Core is a set of fifteen core elements for describing resources. It has been formally standardized as an ISO and can be used for multiple purposes, from simple resource description, to combining metadata vocabularies of different metadata standards, to providing interoperability for metadata vocabularies in the linked data cloud and Semantic Web implementations. It consists of 24 classes and 86 properties;
- ○
- CIDOC-CRM: CIDOC-CRM v6.2 is a theoretical and practical tool for information integration in the field of cultural heritage. It is the outcome of over 20 years of development and maintenance work, of a working group, and is currently an ISO standard. It consists of 84 classes and more than 270 properties;
- ○
- Basic Formal Ontology (BFO). The Basic Formal Ontology is the upper-level ontology upon which OBO Foundry ontologies are built. It consists of 36 classes with only 24 annotation properties as usually is used with the Relations Ontology (RO) that includes the properties;
- ○
- Ontology for Biomedical Investigations (OBI). The ontology for Biomedical Investigations is an integrated ontology for the description of life-science and clinical investigations and is available at the OBO foundry. It consists of 4319 classes and more than 170 properties.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gruber, T.R. A translation approach to portable ontology specifications. Knowl. Acquis. 1993, 5, 199–220. [Google Scholar] [CrossRef]
- Akbar, Z.; Mustika, H.F.; Rini, D.S.; Manik, L.P.; Indrawati, A.; Fefirenta, A.D.; Djarwaningsih, T. An ontology-driven personalized faceted search for exploring knowledge bases of capsicum. Futur. Internet 2021, 13, 172. [Google Scholar] [CrossRef]
- Pappas, A.; Troullinou, G.; Roussakis, G.; Kondylakis, H.; Plexousakis, D. Exploring importance measures for summarizing RDF/S KBs. In European Semantic Web Conference; Springer: Cham, Switzerland, 2017; pp. 387–403. [Google Scholar]
- Kondylakis, H.; Bucur, A.; Crico, C.; Dong, F.; Graf, N.; Hoffman, S.; Koumakis, L.; Manenti, A.; Marias, K.; Mazzocco, K.; et al. Patient empowerment for cancer patients through a novel ICT infrastructure. J. Biomed. Inform. 2020, 101, 103342. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Laskowski, M. Toward an ontology-driven blockchain design for supply-chain provenance. Intell. Syst. Account. Financ. Manag. 2018, 25, 18–27. [Google Scholar] [CrossRef]
- Pauwels, P.; Terkaj, W. EXPRESS to OWL for construction industry: Towards a recommendable and usable ifcowl ontology. Autom. Constr. 2016, 63, 100–133. [Google Scholar] [CrossRef]
- Katis, E.; Kondylakis, H.; Agathangelos, G.; Vassilakis, K. Developing an ontology for curriculum and syllabus. In European Semantic Web Conference; Springer: Cham, Switzerland, 2018; pp. 55–59. [Google Scholar]
- Tzagkarakis, E.; Kondylakis, H.; Vardakis, G.; Papadakis, N. Ontology based governance for employee services. Algorithms 2021, 14, 104. [Google Scholar] [CrossRef]
- Spoladore, D.; Mahroo, A.; Trombetta, A.; Sacco, M. DOMUS: A domestic ontology managed ubiquitous system. J. Ambient Intell. Humaniz. Comput. 2021, 1–6. [Google Scholar] [CrossRef]
- Stratigi, M.; Kondylakis, H.; Stefanidis, K. Fairness in group recommendations in the health domain. In Proceedings of the IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA, 19–22 April 2017; pp. 1481–1488. [Google Scholar]
- Stratigi, M.; Kondylakis, H.; Stefanidis, K. Fairgrecs: Fair group recommendations by exploiting personal health information. In Proceedings of the International Conference on Database and Expert Systems Applications, Regensburg, Germany, 3–6 September 2018; pp. 147–155. [Google Scholar]
- Kondylakis, H.; Koumakis, L.; Psaraki, M.; Troullinou, G.; Chatzimina, M.; Marias, E.K.K.; Tsiknakis, M. Semantically-enabled personal medical information recommender. In Proceedings of the International Semantic Web Conference (Posters & Demos), Bethlehem, PA, USA, 11–15 October 2015. [Google Scholar]
- Kondylakis, H.; Flouris, G.; Fundulaki, I.; Papakonstantinou, V.; Tsiknakis, M. Flexible access to patient data through e-consent. In Proceedings of the 5th EAI International Conference on Wireless Mobile Communication and Healthcare, London, UK, 14–16 October 2015; pp. 263–266. [Google Scholar]
- Spoladore, D.; Pessot, E. Collaborative ontology engineering methodologies for the development of decision support systems: Case studies in the healthcare domain. Electronics 2021, 10, 1060. [Google Scholar] [CrossRef]
- CIDOC-CRM. Available online: http://www.CIDOC-CRM.org/ (accessed on 16 June 2021).
- Al-Aswadi, F.N.; Chan, H.Y.; Gan, K.H. Automatic ontology construction from text: A review from shallow to deep learning trend. Artif. Intell. Rev. 2019, 53, 3901–3928. [Google Scholar] [CrossRef]
- Delta Ontology Evaluation System. Available online: http://83.212.77.24/ (accessed on 1 July 2021).
- Goldstein, A.; Fink, L.; Ravid, G. A Framework for evaluating agricultural ontologies. Sustainability 2021, 13, 6387. [Google Scholar] [CrossRef]
- Raad, J.; Cruz, C. A Survey on ontology evaluation methods. In Proceedings of the International Conference on Knowledge Engineering and Ontology Development, Lisbon, Portugal, 12–14 November 2015. [Google Scholar]
- Yao, H.; Orme, A.M.; Etzkorn, L. Cohesion metrics for ontology design and application. J. Comput. Sci. 2005, 1, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Pathak, J.; Johnson, T.M.; Chute, C.G. Modular ontology techniques and their applications in the biomedical domain. In Proceedings of the 2008 IEEE International Conference on Information Reuse and Integration, Las Vegas, NV, USA, 13–15 July 2008; pp. 351–356. [Google Scholar]
- Schlicht, A.; Stuckenschmidt, H. Towards structural criteria for ontology modularization. In Proceedings of the WoMO, Aachen, Germany, 5 November 2006. [Google Scholar]
- Franco, M.; Vivo, J.M.; Quesada-Martínez, M.; Duque-Ramos, A.; Fernández-Breis, J.T. Evaluation of ontology structural metrics based on public repository data. Brief. Bioinform. 2020, 21, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Brank, J.; Grobelnik, M.; Mladenic, D. A Survey of ontology evaluation techniques. In Proceedings of the Conference on Data Mining and Data Warehouses (SiKDD), Ljubljana, Slovenia; 2005; pp. 166–170. [Google Scholar]
- Hlomani, H.; Stacey, D. Approaches, methods, metrics, measures, and subjectivity in ontology evaluation: A survey. Semant. Web J. 2014, 1, 1–11. [Google Scholar]
- Aruna, T.; Saranya, K.; Bhandari, C. A Survey on ontology evaluation tools. In Proceedings of the 2011 International Conference on Process Automation, Control and Computing IEEE, Coimbatore, India, 20–22 July 2011; pp. 1–5. [Google Scholar]
- Lourdusamy, R.; John, A. A review on metrics for ontology evaluation. In Proceedings of the International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19–20 January 2018; pp. 1415–1421. [Google Scholar]
- Tartir, S.; Arpinar, I.B.; Moore, M.; Sheth, A.P.; Aleman-Meza, B. OntoQA: Metric-based ontology quality analysis. In Proceedings of the IEEE ICDM Workshop on KADASH, Houston, TX, USA, 27 November 2005. [Google Scholar]
- Avila, C.V.S.; Maia, G.; Franco, W.; Rolim, T.V.; Franco, A.O.R.; Vidal, V.M.P. OntoVal: A tool for ontology evaluation by domain specialists. In Proceedings of the 38th International Conference on Conceptual Modeling, Salvador, Brazil, 4–7 November 2019; pp. 143–147. [Google Scholar]
- Lantow, B. Ontometrics: Putting metrics into use for ontology evaluation. IC3K 2016, 2, 186–191. [Google Scholar]
- Reiz, A.; Dibowski, H.; Sandkuhl, K.; Lantow, B. Ontology metrics as a service (OMaaS). In Proceedings of the KEOD, Budapest, Hungary, 2–4 November 2020. [Google Scholar] [CrossRef]
- Amith, M.; Manion, F.; Liang, C.; Harris, M.; Wang, D.; He, Y.; Tao, C. OntoKeeper: Semiotic-driven ontology evaluation tool for biomedical ontologists. IEEE BIBM 2019, 1614–1617. [Google Scholar] [CrossRef]
- Burton-Jones, A.; Storey, V.C.; Sugumaran, V.; Ahluwalia, P. A semiotic metrics suite for assessing the quality of ontologies. Data Knowl. Eng. 2005, 55, 84–102. [Google Scholar] [CrossRef]
- Poveda-Villalón, M.; Gómez-Pérez, A.; Suárez-Figueroa, M.C. OOPS! (OntOlogy Pitfall Scanner!): Supporting ontology eval-uation on-line. IJSWIS 2014, 10, 7–34. [Google Scholar]
- Amith, M.; He, Z.; Bian, J.; Lossio-Ventura, J.A.; Tao, C. Assessing the practice of biomedical ontology evaluation: Gaps and opportunities. J. Biomed. Inform. 2018, 80, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Schulz, S.; Boeker, M.; Ramos, J.A.V.; Jansen, L. Pizza & wine: The need for educational tools for foundational ontologies. In Proceedings of the JOWO, Bozen-Bolzano, Italy, 21–23 September 2017. [Google Scholar]
- Troullinou, G.; Kondylakis, H.; Stefanidis, K.; Plexousakis, D. Exploring RDFS kbs using summaries. In Proceedings of the International Semantic Web Conference, Monterey, CA, USA, 8–12 October 2018; pp. 268–284. [Google Scholar]
Evaluation Metrics | |
1 | Size |
2 | Appropriateness of module size |
Shema Metrics | |
3 | Attribute richness |
4 | Class/Relation Ratio (CRR) |
5 | Equivalence Ratio (ER) |
Graph Metrics | |
6 | Average population (AP) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondylakis, H.; Nikolaos, A.; Dimitra, P.; Anastasios, K.; Emmanouel, K.; Kyriakos, K.; Iraklis, S.; Stylianos, K.; Papadakis, N. Delta: A Modular Ontology Evaluation System. Information 2021, 12, 301. https://doi.org/10.3390/info12080301
Kondylakis H, Nikolaos A, Dimitra P, Anastasios K, Emmanouel K, Kyriakos K, Iraklis S, Stylianos K, Papadakis N. Delta: A Modular Ontology Evaluation System. Information. 2021; 12(8):301. https://doi.org/10.3390/info12080301
Chicago/Turabian StyleKondylakis, Haridimos, Astyrakakis Nikolaos, Papatsaroucha Dimitra, Koumarelis Anastasios, Kritikakis Emmanouel, Kalkanis Kyriakos, Skepasianos Iraklis, Klados Stylianos, and Nikos Papadakis. 2021. "Delta: A Modular Ontology Evaluation System" Information 12, no. 8: 301. https://doi.org/10.3390/info12080301
APA StyleKondylakis, H., Nikolaos, A., Dimitra, P., Anastasios, K., Emmanouel, K., Kyriakos, K., Iraklis, S., Stylianos, K., & Papadakis, N. (2021). Delta: A Modular Ontology Evaluation System. Information, 12(8), 301. https://doi.org/10.3390/info12080301