Ship Classification Based on Improved Convolutional Neural Network Architecture for Intelligent Transport Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Convolutional Neural Network Structure
2.2. Classic CNN Model
- (a)
- AlexNet
- (b)
- VGG-16
- (c)
- ResNet-152
- (d)
- InceptionV3
- (e)
- GoogleNet
3. Classification Dataset and Hyperparameter Setting
3.1. Dataset Description
3.2. Evaluation Indicators
3.3. Experiment Set-up and Process
- (a)
- Image pre-processing
- (b)
- Parameter initialization
- (c)
- Hyperparameter settings
4. Proposed Method
4.1. Network Adjustment
4.2. Experiment Results and Analysis
4.3. Analysis of Proposed Classification System with the MARVEL Dataset
4.4. Comparison of Proposed and Existing Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jin, X.-B.; Sun, S.; Wei, H.; Yang, F.-B. Advances in Multi-Sensor Information Fusion: Theory and Applications 2017. Sensors 2018, 18, 1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Ziou, D.; Armenakis, C.; Li, D.; Li, Q. A comparative analysis of image fusion methods. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1391–1402. [Google Scholar] [CrossRef]
- Rainey, K.; Parameswaran, S.; Harguess, J.; Stastny, J. Vessel classification in overhead satellite imagery using learned dictionaries. Appl. Digit. Image Process. XXXV 2012, 8499, 84992F. [Google Scholar] [CrossRef]
- Fernandez Arguedas, V. Texture-based vessel classifier for electro-optical satellite imagery. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27 September–1 October 2015; pp. 3866–3870. [Google Scholar]
- Parameswaran, S.; Rainey, K. Vessel classification in overhead satellite imagery using weighted “bag of visual words”. Autom. Target Recognit. XXV 2015, 9476, 947609. [Google Scholar]
- Leclerc, M.; Tharmarasa, R.; Florea, M.; Boury-Brisset, A.-C.; Kirubarajan, T.; Duclos-Hindie, N. Ship Classification Using Deep Learning Techniques for Maritime Target Tracking. In Proceedings of the 2018 21st International Conference on Information Fusion (FUSION), Cambridge, UK, 10–13 July 2018; pp. 750–757. [Google Scholar]
- Jangblad, M. Object Detection in Infrared Images Using Deep Convolutional Neural Networks. Ph.D. Thesis, Uppsala University, Uppsala, Sweden, 2018; p. 43. [Google Scholar]
- Rainey, K.; Reeder, J.; Corelli, A. Convolution neural networks for ship type recognition. In Automatic Target Recognition XXVI; International Society for Optics and Photonics: Bellingham, WA, USA, 2016; p. 984409. [Google Scholar]
- Liu, Y.; Cui, H.; Li, G. A Novel Method for Ship Detection and Classification on Remote Sensing Images. In Artificial Neural Networks and Machine Learning—ICANN 2017; Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 556–564. [Google Scholar]
- Khellal, A.; Ma, H.; Fei, Q. Convolutional Neural Network Based on Extreme Learning Machine for Maritime Ships Recognition in Infrared Images. Sensors 2018, 18, 1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toshev, A.; Szegedy, C. DeepPose: Human Pose Estimation via Deep Neural Networks. 2014, pp. 1653–1660. Available online: https://openaccess.thecvf.com/content_cvpr_2014/html/Toshev_DeepPose_Human_Pose_2014_CVPR_paper.html (accessed on 26 January 2021).
- Zhu, H.; Lin, N.; Leung, D. Ship Classification from SAR Images based on Sequence Input of Deep Neural Network. In Proceedings of the 2020 International Conference on Environment Science and Advanced Energy Technologies, ESAET 2020, Chongqing, China, 18–19 January 2020; Volume 1549. [Google Scholar]
- Liu, K.; Yu, S.; Liu, S. An Improved InceptionV3 Network for Obscured Ship Classification in Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4738–4747. [Google Scholar] [CrossRef]
- Pedroche, D.S.; Amigo, D.; Garcia, J.; Molina, J.M. Architecture for trajectory-based fishing ship classification with AIS data. Sensors 2020, 20, 3782. [Google Scholar] [CrossRef] [PubMed]
- LI, B.; XIE, X.; WEI, X.; TANG, W. Ship detection and classification from optical remote sensing images: A survey. Chin. J. Aeronaut. 2021, 34, 145–163. [Google Scholar] [CrossRef]
- Qiu, X.; Li, M.; Dong, L.; Deng, G.; Zhang, L. Dual-band maritime imagery ship classification based on multilayer convolutional feature fusion. J. Sens. 2020, 2020, 8891018. [Google Scholar] [CrossRef]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A Survey of the Recent Architectures of Deep Convolutional Neural Networks. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9908, p. 645. ISBN 978-3-319-46492-3. [Google Scholar]
- Jain, A. Game of Deep Learning: Ship Datasets. Available online: https://kaggle.com/arpitjain007/game-of-deep-learning-ship-datasets (accessed on 24 June 2021).
- SG, Kaiming He Initialization. Available online: https://medium.com/@shoray.goel/kaiming-he-initialization-a8d9ed0b5899 (accessed on 21 June 2021).
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. arXiv 2015, arXiv:1512.00567. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Wang, C.; Zhang, H.; Wu, F.; Jiang, S.; Zhang, B.; Tang, Y. A Novel Hierarchical Ship Classifier for COSMO-SkyMed SAR Data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 484–488. [Google Scholar] [CrossRef]
- Zhang, M.; Choi, J.; Daniilidis, K.; Wolf, M.; Kanan, C. VAIS: A dataset for recognizing maritime imagery in the visible and infrared spectrums. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Boston, MA, USA, 7–12 June 2015; p. 16. [Google Scholar]
- Jiang, M.; Yang, X.; Dong, Z.; Fang, S.; Meng, J. Ship Classification Based on Superstructure Scattering Features in SAR Images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 616–620. [Google Scholar] [CrossRef]
- Gundogdu, E.; Solmaz, B.; Yücesoy, V.; Koç, A. MARVEL: A Large-Scale Image Dataset for Maritime Vessels. In Proceedings of the Asian Conference on Computer Vision, Taipei, Taiwan, 20–24 November 2016; p. 180, ISBN 978-3-319-54192-1. [Google Scholar]
- Shen, S.; Yang, H.; Li, J.; Xu, G.; Sheng, M. Auditory Inspired Convolutional Neural Networks for Ship Type Classification with Raw Hydrophone Data. Entropy 2018, 20, 990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ucar, F.; Korkmaz, D. A novel ship classification network with cascade deep features for line-of-sight sea data. Mach. Vis. Appl. 2021, 32, 73. [Google Scholar] [CrossRef]
Parameter | Image Size | Optimization | Weight Decay Factor | Training Learning Rate | Training Epochs | Momentum Factor | Batch Size |
---|---|---|---|---|---|---|---|
Value | 224 × 224 | Adam | 1 × 10−5 | 0.001 | 40 | 0.9 | 64 |
No_Fcn | Fcn1_Out_Features | Fcn2_In_Features | Fcn2_Out_Features | Acc (%) |
---|---|---|---|---|
1 | 5 | - | - | 91.24 |
2 | 1636 | 1636 | 5 | 95.79 |
2 | 1124 | 1124 | 5 | 95.71 |
2 | 778 | 778 | 5 | 95.62 |
Depth | Accuracy (%) | |||||
---|---|---|---|---|---|---|
Cargo | Military | Tanker | Carrier | Cruise | Average Accuracy | |
18 | 91.87 | 98.00 | 87.56 | 92.81 | 95.98 | 93.24 |
34 | 92.79 | 96.18 | 88.92 | 96.25 | 95.89 | 94.01 |
50 | 91.85 | 96.93 | 90.46 | 95.74 | 95.68 | 94.13 |
101 | 92.71 | 97.09 | 89.35 | 97.63 | 96.51 | 94.66 |
152 | 93.00 | 98.00 | 91.00 | 99.00 | 98.00 | 95.80 |
Class | Acc | Pre | Rec | Spec | F1 Score |
---|---|---|---|---|---|
Cargo | 93.00 | 90.29 | 93.00 | 97.5 | 91.62 |
Military | 98.00 | 98.99 | 98.99 | 99.75 | 98.99 |
Cruise | 98.00 | 98.99 | 97.03 | 99.75 | 98.00 |
Carrier | 99.00 | 98.02 | 99.00 | 80.12 | 98.51 |
Tanker | 91.00 | 92.86 | 91.00 | 98.25 | 91.92 |
Overall | 95.80 | 95.83 | 95.80 | 95.07 | 95.81 |
Class | Acc | Pre | Rec | Spec | F1 Score |
---|---|---|---|---|---|
Cargo | 88.69 | 81.33 | 88.69 | 94.03 | 84.85 |
Military | 93.46 | 95.44 | 93.46 | 98.33 | 94.44 |
Cruise | 88.94 | 97.86 | 88.94 | 98.76 | 93.18 |
Carrier | 96.99 | 97.89 | 96.99 | 79.09 | 97.44 |
Tanker | 88.65 | 89.85 | 88.65 | 96.44 | 89.25 |
Overall | 91.35 | 92.47 | 91.35 | 93.33 | 91.83 |
Method | Year | Acc | Pre | Rec | Spec | F1 Score |
---|---|---|---|---|---|---|
Hierarchical ship classifier [26] | 2014 | 82.00 | - | |||
Gnostic field + CNN [27] | 2015 | 87.40 | - | - | - | - |
Parametric vector estimation + SVM [28] | 2016 | 83.33 | - | - | - | - |
CNN + SVM [29] | 2017 | 90.93 | 90.86 | 91.01 | 90.84 | 90.93 |
Auditory-inspired CNN [30] | 2018 | 79.20 | 79.66 | 79.33 | - | 78.83 |
Inception v3 [6] | 2018 | 78.73 | - | |||
Cas-ShipNet [31] | 2020 | 95.06 | 95.07 | 95.06 | 98.77 | 95.05 |
Our method | 2021 | 95.8 | 95.83 | 95.80 | 95.07 | 95.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonidas, L.A.; Jie, Y. Ship Classification Based on Improved Convolutional Neural Network Architecture for Intelligent Transport Systems. Information 2021, 12, 302. https://doi.org/10.3390/info12080302
Leonidas LA, Jie Y. Ship Classification Based on Improved Convolutional Neural Network Architecture for Intelligent Transport Systems. Information. 2021; 12(8):302. https://doi.org/10.3390/info12080302
Chicago/Turabian StyleLeonidas, Lilian Asimwe, and Yang Jie. 2021. "Ship Classification Based on Improved Convolutional Neural Network Architecture for Intelligent Transport Systems" Information 12, no. 8: 302. https://doi.org/10.3390/info12080302
APA StyleLeonidas, L. A., & Jie, Y. (2021). Ship Classification Based on Improved Convolutional Neural Network Architecture for Intelligent Transport Systems. Information, 12(8), 302. https://doi.org/10.3390/info12080302