Low-Altitude Aerial Video Surveillance via One-Class SVM Anomaly Detection from Textural Features in UAV Images
Abstract
:1. Introduction
- Designing a customized spatial relationship, i.e., a discretized circumference, and generalized Haralick equations to build meaningful GLCMs and textural features;
- Describing an approach that achieves real-time capabilities by exploiting the notoriously lightweight OC-SVM algorithm;
- Presenting quantitative and qualitative experiments of a novel method setting a new baseline for the anomaly detection task on the UMCD dataset.
2. Related Work
2.1. Industrial and Private Applications
2.2. Surveillance
2.3. UAV Surveillance
3. Materials and Methods
- Patch Generation: the input image is converted to grayscale and split into patches, where n and m correspond to the width and height of a given patch, respectively. Notice that these smaller sub-regions enable the proposed algorithm to both detect and localize anomalies in the input;
- Features Extraction: from each generated patch P, a gray level co-occurrency matrix , representing the joint probability distributions of pixel pairs in a given sub-region, is computed using a customized geometric shape, i.e., by selecting pixels on a discretized r-radius circumference. Subsequently, Haralick textural features for patch P are extracted by computing several statistics on ;
- Anomaly Detection: using Haralick textural features of a given patch P, anomalies are detected exploiting the OC-SVM algorithm. Specifically, this classifier is trained by providing statistics of anomaly-free patches. A hyperplane encompassing this single class is then calculated and used to detect anomalies in new patches.
3.1. Customized Haralick Feature Extraction
3.1.1. N-Order Momentum and N-Order Central Moment
3.1.2. Homogeneity and Contrast
3.1.3. Inverse Difference and Entropy
3.1.4. Correlation and Difference Entropy
3.2. OC-SVM Classifier
4. Experimental Results and Discussion
4.1. Dataset
4.2. Implementation Details
4.3. Performance Evaluation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, M.H.; Huang, C.R.; Liu, W.C.; Lin, S.Z.; Chuang, K.T. Binary Descriptor Based Nonparametric Background Modeling for Foreground Extraction by Using Detection Theory. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 595–608. [Google Scholar] [CrossRef]
- Avola, D.; Cinque, L.; Foresti, G.L.; Massaroni, C.; Pannone, D. A keypoint-based method for background modeling and foreground detection using a PTZ camera. Pattern Recognit. Lett. 2017, 96, 96–105. [Google Scholar] [CrossRef]
- Javed, S.; Mahmood, A.; Bouwmans, T.; Jung, S.K. Background–Foreground Modeling Based on Spatiotemporal Sparse Subspace Clustering. IEEE Trans. Image Process. 2017, 26, 5840–5854. [Google Scholar] [CrossRef]
- Avola, D.; Bernardi, M.; Cinque, L.; Foresti, G.L.; Massaroni, C. Adaptive bootstrapping management by keypoint clustering for background initialization. Pattern Recognit. Lett. 2017, 100, 110–116. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Rup, S.; Swamy, M. An improved scheme for multifeature-based foreground detection using challenging conditions. Digit. Signal Process. 2021, 113, 103030. [Google Scholar] [CrossRef]
- Bakheet, S.; Al-Hamadi, A. A Discriminative Framework for Action Recognition Using f-HOL Features. Information 2016, 7, 68. [Google Scholar] [CrossRef] [Green Version]
- Avola, D.; Bernardi, M.; Foresti, G.L. Fusing Depth and Colour Information for Human Action Recognition. Multimed. Tools Appl. 2019, 78, 5919–5939. [Google Scholar] [CrossRef]
- Tu, Z.; Li, H.; Zhang, D.; Dauwels, J.; Li, B.; Yuan, J. Action-Stage Emphasized Spatiotemporal VLAD for Video Action Recognition. IEEE Trans. Image Process. 2019, 28, 2799–2812. [Google Scholar] [CrossRef] [PubMed]
- Avola, D.; Cascio, M.; Cinque, L.; Foresti, G.L.; Massaroni, C.; Rodolà, E. 2-D Skeleton-Based Action Recognition via Two-Branch Stacked LSTM-RNNs. IEEE Trans. Multimed. 2020, 22, 2481–2496. [Google Scholar] [CrossRef]
- Du, S.; Chen, S. Salient Object Detection via Random Forest. IEEE Signal Process. Lett. 2014, 21, 51–54. [Google Scholar] [CrossRef]
- Avola, D.; Cinque, L.; Foresti, G.L.; Mercuri, C.; Pannone, D. A Practical Framework for the Development of Augmented Reality Applications by Using ArUco Markers. In Proceedings of the International Conference on Pattern Recognition Applications and Methods (ICPRAM), Rome, Italy, 24–26 February 2016; pp. 645–654. [Google Scholar]
- Hu, Q.; Paisitkriangkrai, S.; Shen, C.; van den Hengel, A.; Porikli, F. Fast Detection of Multiple Objects in Traffic Scenes with a Common Detection Framework. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1002–1014. [Google Scholar] [CrossRef] [Green Version]
- Avola, D.; Foresti, G.L.; Cinque, L.; Massaroni, C.; Vitale, G.; Lombardi, L. A multipurpose autonomous robot for target recognition in unknown environments. In Proceedings of the IEEE International Conference on Industrial Informatics (INDIN), Poitiers, France, 19–21 July 2016; pp. 766–771. [Google Scholar]
- Cao, X.; Yang, L.; Guo, X. Total Variation Regularized RPCA for Irregularly Moving Object Detection Under Dynamic Background. IEEE Trans. Cybern. 2016, 46, 1014–1027. [Google Scholar] [CrossRef] [PubMed]
- Avola, D.; Cinque, L.; Foresti, G.L.; Marini, M.R.; Pannone, D. A Rover-based System for Searching Encrypted Targets in Unknown Environments. In Proceedings of the International Conference on Pattern Recognition Applications and Methods (ICPRAM), Funchal, Madeira, 16–18 January 2018; pp. 254–261. [Google Scholar]
- Lei, S.; Zhang, B.; Wang, Y.; Dong, B.; Li, X.; Xiao, F. Object recognition using non-negative matrix factorization with sparseness constraint and neural network. Information 2019, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Avola, D.; Cinque, L.; Di Girolamo, M. A novel T-CAD framework to support medical image analysis and reconstruction. In Proceedings of the International Conference on Image Analysis and Processing, Ravenna, Italy, 14–16 September 2011; pp. 414–423. [Google Scholar]
- Islam, A.; Reza, S.M.S.; Iftekharuddin, K.M. Multifractal Texture Estimation for Detection and Segmentation of Brain Tumors. IEEE Trans. Biomed. Eng. 2013, 60, 3204–3215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avola, D.; Cinque, L.; Placidi, G. Customized first and second order statistics based operators to support advanced texture analysis of MRI images. Comput. Math. Methods Med. 2013, 2013, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, W. A New Method for Refined Recognition for Heart Disease Diagnosis Based on Deep Learning. Information 2020, 11, 556. [Google Scholar] [CrossRef]
- Avola, D.; Cinque, L.; Fagioli, A.; Foresti, G.; Mecca, A. Ultrasound Medical Imaging Techniques: A Survey. ACM Comput. Surv. (CSUR) 2021, 54, 1–38. [Google Scholar] [CrossRef]
- Yu, B.; Zhou, L.; Wang, L.; Yang, W.; Yang, M.; Bourgeat, P.; Fripp, J. SA-LuT-Nets: Learning Sample-Adaptive Intensity Lookup Tables for Brain Tumor Segmentation. IEEE Trans. Med. Imaging 2021, 40, 1417–1427. [Google Scholar] [CrossRef] [PubMed]
- Avola, D.; Cinque, L.; Fagioli, A.; Filetti, S.; Grani, G.; Rodolà, E. Multimodal Feature Fusion and Knowledge-Driven Learning via Experts Consult for Thyroid Nodule Classification. IEEE Trans. Circuits Syst. Video Technol. 2021, 1. [Google Scholar] [CrossRef]
- Mumenthaler, C.; Sander, D.; Manstead, A.S. Emotion recognition in simulated social interactions. IEEE Trans. Affect. Comput. 2018, 11, 308–312. [Google Scholar] [CrossRef] [Green Version]
- Avola, D.; Cinque, L.; Fagioli, A.; Foresti, G.L.; Massaroni, C. Deep temporal analysis for non-acted body affect recognition. IEEE Trans. Affect. Comput. 2020, 1. [Google Scholar] [CrossRef]
- Wu, Z.; Singh, B.; Davis, L.; Subrahmanian, V. Deception detection in videos. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), New Orleans, LA, USA, 2–7 February 2018; pp. 1–8. [Google Scholar]
- Avola, D.; Cascio, M.; Cinque, L.; Fagioli, A.; Foresti, G.L. LieToMe: An Ensemble Approach for Deception Detection from Facial Cues. Int. J. Neural Syst. 2021, 31, 2050068. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.; Crockett, K.; O’Shea, J.; Hussain, A.; Khan, B.M. Deception in the eyes of deceiver: A computer vision and machine learning based automated deception detection. Expert Syst. Appl. 2021, 169, 114341. [Google Scholar] [CrossRef]
- Avola, D.; Cinque, L.; De Marsico, M.; Fagioli, A.; Foresti, G.L. LieToMe: Preliminary study on hand gestures for deception detection via Fisher-LSTM. Pattern Recognit. Lett. 2020, 138, 455–461. [Google Scholar] [CrossRef]
- Petracca, A.; Carrieri, M.; Avola, D.; Basso Moro, S.; Brigadoi, S.; Lancia, S.; Spezialetti, M.; Ferrari, M.; Quaresima, V.; Placidi, G. A virtual ball task driven by forearm movements for neuro-rehabilitation. In Proceedings of the International Conference on Virtual Rehabilitation (ICVR), Valencia, Spain, 9–12 June 2015; pp. 162–163. [Google Scholar]
- Palestra, G.; Rebiai, M.; Courtial, E.; Koutsouris, D. Evaluation of a rehabilitation system for the elderly in a day care center. Information 2019, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Avola, D.; Cinque, L.; Foresti, G.L.; Marini, M.R. An interactive and low-cost full body rehabilitation framework based on 3D immersive serious games. J. Biomed. Inform. 2019, 89, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Shum, L.C.; Valdés, B.A.; Hodges, N.J.; Van der Loos, H.F.M. Error Augmentation in Immersive Virtual Reality for Bimanual Upper-Limb Rehabilitation in Individuals with and without Hemiplegic Cerebral Palsy. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 541–549. [Google Scholar] [CrossRef]
- Avola, D.; Cinque, L.; Pannone, D. Design of a 3D Platform for Immersive Neurocognitive Rehabilitation. Information 2020, 11, 134. [Google Scholar] [CrossRef] [Green Version]
- Almasi, S.; Shahmoradi, L.; Ansari, N.N.; Honarpishe, R.; Ahmadi, h. Kinect-based Virtual Rehabilitation for Upper Extremity Motor Recovery in Chronic Stroke. In Proceedings of the International Serious Games Symposium (ISGS), Tehran, Iran, 23–25 December 2020; pp. 51–60. [Google Scholar]
- Demirhan, M.; Premachandra, C. Development of an automated camera-based drone landing system. IEEE Access 2020, 8, 202111–202121. [Google Scholar] [CrossRef]
- Premachandra, C.; Thanh, D.N.H.; Kimura, T.; Kawanaka, H. A study on hovering control of small aerial robot by sensing existing floor features. IEEE/CAA J. Autom. Sin. 2020, 7, 1016–1025. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.; Verma, O.P. Monitoring and surveillance of urban road traffic using low altitude drone images: A deep learning approach. Multimed. Tools Appl. 2021, 1–21. [Google Scholar] [CrossRef]
- Roberts, R.; Inzerillo, L.; Di Mino, G. Using UAV based 3D modelling to provide smart monitoring of road pavement conditions. Information 2020, 11, 568. [Google Scholar] [CrossRef]
- Pijl, A.; Tosoni, M.; Roder, G.; Sofia, G.; Tarolli, P. Design of terrace drainage networks using UAV-based high-resolution topographic data. Water 2019, 11, 814. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, W.; Shi, W.; Wenbin, X. Modeling complex building structure (LoD2) using image-based point cloud. In Proceedings of the IEEE International Conference on Image Processing, Applications and Systems (IPAS), Sophia Antipolis, France, 12–14 December 2018; pp. 110–114. [Google Scholar]
- Zheng, X.; Wang, F.; Xia, J.; Gong, X. The methodology of UAV route planning for efficient 3D reconstruction of building model. In Proceedings of the International Conference on Geoinformatics (ICG), Buffalo, NY, USA, 2–4 August 2017; pp. 1–4. [Google Scholar]
- Barrile, V.; Candela, G.; Fotia, A.; Bernardo, E. UAV survey of bridges and viaduct: Workflow and application. In Proceedings of the International Conference on Computational Science and Its Applications (ICCSA), Saint Petersburg, Russia, 1–4 July 2019; pp. 269–284. [Google Scholar]
- Jiang, W.; Zhou, Y.; Ding, L.; Zhou, C.; Ning, X. UAV-based 3D reconstruction for hoist site mapping and layout planning in petrochemical construction. Autom. Constr. 2020, 113, 103137. [Google Scholar] [CrossRef]
- Shao, Z.; Yang, N.; Xiao, X.; Zhang, L.; Peng, Z. A multi-view dense point cloud generation algorithm based on low-altitude remote sensing images. Remote Sens. 2016, 8, 381. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, Y.S.; Obanawa, H. Volumetric change detection in bedrock coastal cliffs using terrestrial laser scanning and uas-based SFM. Sensors 2020, 20, 3403. [Google Scholar] [CrossRef] [PubMed]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Lee, S.B.; Song, M.; Cho, J.S. Change Detection in Unmanned Aerial Vehicle Images for Progress Monitoring of Road Construction. Buildings 2021, 11, 150. [Google Scholar] [CrossRef]
- Mesquita, D.B.; dos Santos, R.F.; Macharet, D.G.; Campos, M.F.; Nascimento, E.R. Fully convolutional siamese autoencoder for change detection in UAV aerial images. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1455–1459. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, S.; Lei, L.; Deng, Z. Siamese network for object tracking in aerial video. In Proceedings of the International Conference on Image, Vision and Computing (ICIVC), Chongqing, China, 27–29 June 2018; pp. 519–523. [Google Scholar]
- Almeshal, A.M.; Alenezi, M.R.; Alshatti, A.K. Accuracy assessment of small unmanned aerial vehicle for traffic accident photogrammetry in the extreme operating conditions of Kuwait. Information 2020, 11, 442. [Google Scholar] [CrossRef]
- Yoo, L.S.; Lee, J.H.; Lee, Y.K.; Jung, S.K.; Choi, Y. Application of a Drone Magnetometer System to Military Mine Detection in the Demilitarized Zone. Sensors 2021, 21, 3175. [Google Scholar] [CrossRef]
- Jia, N.; Yang, Z.; Yang, K. Operational effectiveness evaluation of the swarming UAVs combat system based on a system dynamics model. IEEE Access 2019, 7, 25209–25224. [Google Scholar] [CrossRef]
- Suresh, M.; Ghose, D. UAV grouping and coordination tactics for ground attack missions. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 673–692. [Google Scholar] [CrossRef]
- Kerr, C.; Jaradat, R.; Hossain, N.U.I. Battlefield mapping by an unmanned aerial vehicle swarm: Applied systems engineering processes and architectural considerations from system of systems. IEEE Access 2020, 8, 20892–20903. [Google Scholar] [CrossRef]
- Çintaş, E.; Özyer, B.; Şimşek, E. Vision-based moving UAV tracking by another UAV on low-cost hardware and a new ground control station. IEEE Access 2020, 8, 194601–194611. [Google Scholar] [CrossRef]
- Bianchi, M.; Barfoot, T.D. UAV Localization Using Autoencoded Satellite Images. IEEE Robot. Autom. Lett. 2021, 6, 1761–1768. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, H.; Zhang, J.; Zhuo, L. Multi-level prediction Siamese network for real-time UAV visual tracking. Image Vis. Comput. 2020, 103, 104002. [Google Scholar] [CrossRef]
- Avola, D.; Foresti, G.L.; Martinel, N.; Micheloni, C.; Pannone, D.; Piciarelli, C. Aerial video surveillance system for small-scale UAV environment monitoring. In Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Lecce, Italy, 29 August–1 September 2017; pp. 1–6. [Google Scholar]
- Avola, D.; Foresti, G.L.; Martinel, N.; Micheloni, C.; Pannone, D.; Piciarelli, C. Real-time incremental and geo-referenced mosaicking by small-scale UAVs. In Proceedings of the International Conference on Image Analysis and Processing (ICIAP), Catania, Italy, 11–15 September 2017; pp. 694–705. [Google Scholar]
- Avola, D.; Cinque, L.; Foresti, G.L.; Pannone, D. Homography vs similarity transformation in aerial mosaicking: Which is the best at different altitudes? Multimed. Tools Appl. 2020, 79, 18387–18404. [Google Scholar] [CrossRef]
- Avola, D.; Cinque, L.; Fagioli, A.; Foresti, G.L.; Pannone, D.; Piciarelli, C. Automatic estimation of optimal UAV flight parameters for real-time wide areas monitoring. Multimed. Tools Appl. 2021, 80, 25009–25031. [Google Scholar] [CrossRef]
- Avola, D.; Cinque, L.; Foresti, G.L.; Pannone, D. Visual cryptography for detecting hidden targets by small-scale robots. In Proceedings of the International Conference on Pattern Recognition Applications and Methods (ICPRAM), Funchal, Madeira, 16–18 January 2018; pp. 186–201. [Google Scholar]
- Avola, D.; Cinque, L.; Diko, A.; Fagioli, A.; Foresti, G.L.; Mecca, A.; Pannone, D.; Piciarelli, C. MS-Faster R-CNN: Multi-Stream Backbone for Improved Faster R-CNN Object Detection and Aerial Tracking from UAV Images. Remote Sens. 2021, 13, 1670. [Google Scholar] [CrossRef]
- Avola, D.; Cinque, L.; Fagioli, A.; Foresti, G.L.; Massaroni, C.; Pannone, D. Feature-based SLAM algorithm for small scale UAV with nadir view. In Proceedings of the International Conference on Image Analysis and Processing (ICIAP), Trento, Italy, 9–13 September 2019; pp. 457–467. [Google Scholar]
- Mittal, P.; Singh, R.; Sharma, A. Deep learning-based object detection in low-altitude UAV datasets: A survey. Image Vis. Comput. 2020, 104, 104046. [Google Scholar] [CrossRef]
- Kang, H.; Joung, J.; Kim, J.; Kang, J.; Cho, Y.S. Protect your sky: A survey of counter unmanned aerial vehicle systems. IEEE Access 2020, 8, 168671–168710. [Google Scholar] [CrossRef]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Annual Workshop on Computational Learning Theory (AWCLT), Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152. [Google Scholar]
- Peleg, S.; Naor, J.; Hartley, R.; Avnir, D. Multiple resolution texture analysis and classification. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6, 518–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Tan, T. Brief review of invariant texture analysis methods. Pattern Recognit. 2002, 35, 735–747. [Google Scholar] [CrossRef] [Green Version]
- Davis, L.S.; Johns, S.A.; Aggarwal, J. Texture analysis using generalized co-occurrence matrices. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 1, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Jalal, A.S.; Arya, K. A multimodal liveness detection using statistical texture features and spatial analysis. Multimed. Tools Appl. 2020, 79, 13621–13645. [Google Scholar] [CrossRef]
- Humeau-Heurtier, A. Texture feature extraction methods: A survey. IEEE Access 2019, 7, 8975–9000. [Google Scholar] [CrossRef]
- Avola, D.; Cinque, L. Encephalic NMR image analysis by textural interpretation. In Proceedings of the ACM Symposium on Applied Computing (SAC), Fortaleza, Brazil, 16–20 March 2008; pp. 1338–1342. [Google Scholar]
- Avola, D.; Ferri, F.; Grifoni, P. Genetic algorithms and other approaches in image feature extraction and representation. In Artificial Intelligence for Maximizing Content Based Image Retrieval; IGI Global: Hershey, PA, USA, 2009; pp. 1–19. [Google Scholar]
- Avola, D.; Cinque, L. Encephalic NMR Tumor Diversification by Textural Interpretation. In Proceedings of the International Conference on Image Analysis and Processing (ICIAP), Vietri sul Mare, Italy, 8–11 September 2009; pp. 394–403. [Google Scholar]
- Avola, D.; Cinque, L.; Foresti, G.; Martinel, N.; Pannone, D.; Piciarelli, C. Low-level feature detectors and descriptors for smart image and video analysis: A comparative study. In Bridging the Semantic Gap in Image and Video Analysis; Springer: Cham, Switzerland, 2018; pp. 7–29. [Google Scholar]
- Avola, D.; Cinque, L.; Foresti, G.L.; Martinel, N.; Pannone, D.; Piciarelli, C. A UAV Video Dataset for Mosaicking and Change Detection From Low-Altitude Flights. IEEE Trans. Syst. Man Cybern. 2020, 50, 2139–2149. [Google Scholar] [CrossRef] [Green Version]
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1–58. [Google Scholar] [CrossRef]
- Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep learning for anomaly detection: A review. ACM Comput. Surv. (CSUR) 2021, 54, 1–38. [Google Scholar] [CrossRef]
- Ruff, L.; Kauffmann, J.R.; Vandermeulen, R.A.; Montavon, G.; Samek, W.; Kloft, M.; Dietterich, T.G.; Müller, K.R. A unifying review of deep and shallow anomaly detection. Proc. IEEE 2021, 109, 1–40. [Google Scholar] [CrossRef]
- Nguyen, H.; Tran, K.P.; Thomassey, S.; Hamad, M. Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management. Int. J. Inf. Manag. 2021, 57, 102282. [Google Scholar] [CrossRef]
- Piciarelli, C.; Avola, D.; Pannone, D.; Foresti, G.L. A vision-based system for internal pipeline inspection. IEEE Trans. Ind. Inform. 2018, 15, 3289–3299. [Google Scholar] [CrossRef]
- Bay, H.; Tuytelaars, T.; Van Gool, L. Surf: Speeded up robust features. In Proceedings of the European Conference on Computer Vision (ECCV), Graz, Austria, 7–13 May 2006; pp. 404–417. [Google Scholar]
- Song, B.C.; Kim, M.J.; Ra, J.B. A fast multiresolution feature matching algorithm for exhaustive search in large image databases. IEEE Trans. Circuits Syst. Video Technol. 2001, 11, 673–678. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikainen, M.; Harwood, D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In Proceedings of the International Conference on Pattern Recognition (ICPR), Jerusalem, Israel, 9–13 October 1994; Volume 1, pp. 582–585. [Google Scholar]
- Fahad, L.G.; Tahir, S.F. Activity recognition and anomaly detection in smart homes. Neurocomputing 2021, 423, 362–372. [Google Scholar] [CrossRef]
- Candel, A.; Parmar, V.; LeDell, E.; Arora, A. Deep learning with H2O; H2O.ai, Inc.: Mountain View, CA, USA, 2016; pp. 1–21. [Google Scholar]
- Yamauchi, M.; Ohsita, Y.; Murata, M.; Ueda, K.; Kato, Y. Anomaly detection in smart home operation from user behaviors and home conditions. IEEE Trans. Consum. Electron. 2020, 66, 183–192. [Google Scholar] [CrossRef]
- Ullah, W.; Ullah, A.; Haq, I.U.; Muhammad, K.; Sajjad, M.; Baik, S.W. CNN features with bi-directional LSTM for real-time anomaly detection in surveillance networks. Multimed. Tools Appl. 2021, 80, 16979–16995. [Google Scholar] [CrossRef]
- Sultani, W.; Chen, C.; Shah, M. Real-world anomaly detection in surveillance videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 6479–6488. [Google Scholar]
- Landi, F.; Snoek, C.G.; Cucchiara, R. Anomaly locality in video surveillance. arXiv 2019, arXiv:1901.10364. [Google Scholar]
- Nawaratne, R.; Alahakoon, D.; De Silva, D.; Yu, X. Spatiotemporal anomaly detection using deep learning for real-time video surveillance. IEEE Trans. Ind. Inform. 2019, 16, 393–402. [Google Scholar] [CrossRef]
- Ata-Ur-Rehman; Tariq, S.; Farooq, H.; Jaleel, A.; Wasif, S.M. Anomaly detection with particle filtering for online video surveillance. IEEE Access 2021, 9, 19457–19468. [Google Scholar] [CrossRef]
- Del Moral, P. Nonlinear filtering: Interacting particle resolution. C. R. De L’Académie Des Sci.-Ser. I-Math. 1997, 325, 653–658. [Google Scholar] [CrossRef]
- Chan, A.; Vasconcelos, N. Ucsd pedestrian dataset. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 909–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheikh, H. LIVE Image Quality Assessment Database Release 2. 2005, p. 1. Available online: http://live.ece.utexas.edu/research/quality (accessed on 23 October 2021).
- Khan, M.U.K.; Park, H.S.; Kyung, C.M. Rejecting motion outliers for efficient crowd anomaly detection. IEEE Trans. Inf. Forensics Secur. 2018, 14, 541–556. [Google Scholar] [CrossRef]
- Hamdi, S.; Bouindour, S.; Snoussi, H.; Wang, T.; Abid, M. End-to-End Deep One-Class Learning for Anomaly Detection in UAV Video Stream. J. Imaging 2021, 7, 90. [Google Scholar] [CrossRef]
- Bonetto, M.; Korshunov, P.; Ramponi, G.; Ebrahimi, T. Privacy in mini-drone based video surveillance. In Proceedings of the IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), Ljubljana, Slovenia, 4–8 May 2015; pp. 1–6. [Google Scholar]
- Chriki, A.; Touati, H.; Snoussi, H.; Kamoun, F. Deep learning and handcrafted features for one-class anomaly detection in UAV video. Multimed. Tools Appl. 2021, 80, 2599–2620. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–15 June 2015; pp. 1–9. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20–26 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Klaser, A.; Marszałek, M.; Schmid, C. A spatio-temporal descriptor based on 3d-gradients. In Proceedings of the British Machine Vision Conference (BMVC), Leeds, UK, 1–4 September 2008; p. 275. [Google Scholar]
- Qiao, Y.; Wu, K.; Jin, P. Efficient Anomaly Detection for High-Dimensional Sensing Data with One-Class Support Vector Machine. IEEE Trans. Knowl. Data Eng. 2021, 1. [Google Scholar] [CrossRef]
- Rasheed, W.; Tang, T.B. Anomaly detection of moderate traumatic brain injury using auto-regularized multi-instance one-class SVM. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 28, 83–93. [Google Scholar] [CrossRef] [PubMed]
Patch Size | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
40 × 50 | 42.75% | 100.00% | 42.07% | 59.22% |
50 × 75 | 56.08% | 100.00% | 53.73% | 69.94% |
80 × 100 | 72.15% | 100.00% | 71.23% | 83.19% |
120 × 150 | 24.65% | 65.37% | 19.48% | 30.01% |
160 × 200 | 4.12% | 33.05% | 1.74% | 3.30% |
Radius r | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
2 | 72.08% | 100.00% | 70.14% | 82.44% |
3 | 72.15% | 100.00% | 71.23% | 83.19% |
4 | 70.58% | 99.85% | 68.77% | 81.44% |
5 | 69.23% | 99.23% | 66.10% | 79.34% |
GLCM Spatial Relationship | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Single Offset | 35.24% | 87.42% | 32.17% | 47.03% |
Single Offset | 36.05% | 88.09% | 32.27% | 47.23% |
Single Offset | 33.98% | 86.80% | 31.67% | 46.40% |
Single Offset | 34.72% | 87.13% | 32.05% | 48.85% |
Circumference Radius | 72.15% | 100.00% | 71.23% | 83.19% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avola, D.; Cinque, L.; Di Mambro, A.; Diko, A.; Fagioli, A.; Foresti, G.L.; Marini, M.R.; Mecca, A.; Pannone, D. Low-Altitude Aerial Video Surveillance via One-Class SVM Anomaly Detection from Textural Features in UAV Images. Information 2022, 13, 2. https://doi.org/10.3390/info13010002
Avola D, Cinque L, Di Mambro A, Diko A, Fagioli A, Foresti GL, Marini MR, Mecca A, Pannone D. Low-Altitude Aerial Video Surveillance via One-Class SVM Anomaly Detection from Textural Features in UAV Images. Information. 2022; 13(1):2. https://doi.org/10.3390/info13010002
Chicago/Turabian StyleAvola, Danilo, Luigi Cinque, Angelo Di Mambro, Anxhelo Diko, Alessio Fagioli, Gian Luca Foresti, Marco Raoul Marini, Alessio Mecca, and Daniele Pannone. 2022. "Low-Altitude Aerial Video Surveillance via One-Class SVM Anomaly Detection from Textural Features in UAV Images" Information 13, no. 1: 2. https://doi.org/10.3390/info13010002
APA StyleAvola, D., Cinque, L., Di Mambro, A., Diko, A., Fagioli, A., Foresti, G. L., Marini, M. R., Mecca, A., & Pannone, D. (2022). Low-Altitude Aerial Video Surveillance via One-Class SVM Anomaly Detection from Textural Features in UAV Images. Information, 13(1), 2. https://doi.org/10.3390/info13010002