A Rating Prediction Recommendation Model Combined with the Optimizing Allocation for Information Granularity of Attributes
Abstract
:1. Introduction
2. The Proposed Framework
2.1. Granular Neural Networks
2.1.1. The Interval of Information Granules
2.1.2. Training Objectives
2.2. The Overall Architecture of the Proposed Model
2.2.1. User Latent Factors
2.2.2. Item Latent Factors
2.2.3. Rating Prediction
3. Experiment
3.1. Dataset Description
3.2. Experimental Settings
3.3. Evaluation Metrics
3.4. Baselines
3.5. Experimental Results
3.6. Effect of Embedding Size
3.7. Effect of User’s Attribute Information and Item’s Attribute Information
3.8. Effect of Granularity Distribution Proportion Weights on Node’s Attributes
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer 2009, 42, 30–37. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Sun, Y.; Qi, J. Combating selection biases in recommender systems with a few unbiased ratings. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (WSDM), Online, 8–12 March 2021; pp. 427–435. [Google Scholar]
- Salakhutdinov, R.; Mnih, A. Probabilistic matrix factorization. Adv. Neural Inf. Processing Syst. 2007, 20, 1257–1264. [Google Scholar]
- Jamali, M.; Ester, M. A matrix factorization technique with trust propagation for recommendation in social networks. In Proceedings of the 4th ACM Conference on Recommender Systems, Barcelona, Spain, 26–30 September 2010; ACM: New York, NY, USA, 2010; pp. 135–142. [Google Scholar]
- Zhou, X.; He, J.; Huang, G.; Zhang, Y. SVD-based incremental approaches for recommender systems. J. Comput. Syst. Sci. 2015, 81, 717–733. [Google Scholar] [CrossRef]
- Guibing, G.; Jie, Z.; Neil, Y.-S. TrustSVD: Collaborative filtering with both the explicit and implicit influence of user trust and of item ratings. In Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; AAAI Press: Palo Alto, CA, USA, 2015; pp. 123–129. [Google Scholar]
- Rendle, S.; Freudenthaler, C.; Gantner, Z.; Schmidt-Thieme, L. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, Montreal, ON, Canada, 18–21 June 2009; AUAI Press: Arlington, VA, USA, 2009; pp. 452–461. [Google Scholar]
- Rendle, S. Factorization machines. In Proceedings of the 10th IEEE International Conference on Data Mining, Bradford, UK, 29 June–1 July 2010; IEEE: New York, NY, USA, 2010; pp. 995–1000. [Google Scholar]
- Li, S.; Kawale, J.; Fu, Y. Deep collaborative filtering via marginalized denoising auto-encoder. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, VIC, Australia, 18–23 October 2015; pp. 811–820. [Google Scholar]
- Barkan, O.; Koenigstein, N. Item2vec: Neural item embedding for collaborative filtering. In Proceedings of the 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), Vietri sul Mare, Italy, 13–16 September 2016. [Google Scholar]
- Guo, H.; Tang, R.; Ye, Y.; Li, Z.; He, X. Deepfm: A factorization-machine based neural network for ctr prediction. arXiv 2017, arXiv:1703.04247. [Google Scholar]
- He, X.; Chua, T.-S. Neural factorization machines for sparse predictive analytics. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Japan, 7–11 August 2017. [Google Scholar]
- Xiao, J.; Ye, H.; He, X.; Zhang, H.; Wu, F.; Chua, T.-S. Attentional factorization machines: Learning the weight of feature interactions via attention networks. arXiv 2017, arXiv:1708.04617. [Google Scholar]
- Bronstein, M.M.; Bruna, J.; LeCun, Y.; Szlam, A.; VanderGheynst, P. Geometric Deep Learning: Going beyond Euclidean data. IEEE Signal Process. Mag. 2017, 34, 18–42. [Google Scholar] [CrossRef] [Green Version]
- Derr, T.; Ma, Y.; Tang, J. Signed graph convolutional networks. In Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM), Singapore, 17–20 November 2018; IEEE: New York, NY, USA, 2018; pp. 929–934. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017. [Google Scholar]
- Zhao, Y.; Qi, J.; Liu, Q.; Zhang, R. WGCN: Graph Convolutional Networks with Weighted Structural Features. arXiv 2021, arXiv:2104.14060. [Google Scholar]
- He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.-S. Neural collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web, Perth, WA, Australia, 3–7 April 2017; pp. 173–182. [Google Scholar]
- Zhang, M.; Chen, Y. Inductive matrix completion based on graph neural networks. arXiv 2019, arXiv:1904.12058. [Google Scholar]
- Van den Berg, T.; Kipf, T.N.; Welling, M. Graph convolutional matrix completion. arXiv 2017, arXiv:1706.02263. [Google Scholar]
- Wang, X.; He, X.; Wang, M.; Nie, L.; He, X.; Hong, R.; Chua, T.S. Neural graph collaborative filtering. In Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 21–25 July 2019; pp. 165–174. [Google Scholar]
- Fan, W.; Ma, Y.; Li, Q.; Wang, J.; Cai, G.; Tang, J.; Yin, D. Graph neural networks for social recommendation. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; ACM: New York, NY, USA, 2019; pp. 417–426. [Google Scholar]
- Song, W.; Shi, C.; Xiao, Z.; Duan, Z.; Xu, Y.; Zhang, M.; Tang, J. Autoint: Automatic feature interaction learning via self-attentive neural networks. In Proceedings of the 28th International Conference on Information and Knowledge Management (CIKM), Beijing, China, 3–7 November 2019; pp. 1161–1170. [Google Scholar]
- Su, Y.; Erfani, S.M.; Zhang, R. MMF: Attribute interpretable collaborative filtering. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; IEEE: New York, NY, USA, 2019; pp. 1–8. [Google Scholar]
- Chen, S.; Wu, M. Attention Collaborative Autoencoder for Explicit Recommender Systems. Electronics 2020, 9, 1716. [Google Scholar] [CrossRef]
- Sánchez, D.; Melin, P.; Castillo, O. Optimization of modular granular neural networks using a firefly algorithm for human recognition. Eng. Appl. Artif. Intell. 2017, 64, 172–186. [Google Scholar] [CrossRef]
- Kumar, D.A.; Meher, S.K.; Kumari, K.P. Knowledge-Based Progressive Granular Neural Networks for Remote Sensing Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2017, 10, 5201–5212. [Google Scholar] [CrossRef]
- Song, M.; Jing, Y.; Pedrycz, W. Networks, A study of optimizing allocation of information granularity in input space. Appl. Soft Comput. 2019, 77, 67–75. [Google Scholar] [CrossRef]
- Song, M.; Jing, Y. Networks, The development of granular input spaces and parameters spaces through a hierarchical allocation of information granularity. Inf. Sci. 2020, 517, 148–166. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, M.; Liu, Y.; Ma, S. Neural attentional rating regression with review-level explanations. In Proceedings of the 27th International Conference on World Wide Web, Lyon, France, 23–27 April 2018; pp. 1583–1592. [Google Scholar]
- Hartford, J.; Graham, D.R.; Leyton-Brown, K.; Ravanbakhsh, S. Deep models of interactions across sets. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; p. 10. [Google Scholar]
- Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton, W.L.; Leskovec, J. Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; ACM: New York, NY, USA, 2018; pp. 974–983. [Google Scholar]
Datasets | MovieLens-1M | Book-Crossing |
---|---|---|
# of Users | 6040 | 278,858 |
# of Items | 3706 | 271,379 |
# of Ratings | 1,000,209 | 1,031,175 |
Rating Density | 95.53 | 99.99 |
Dataset | MovieLens-1M | Book-Crossing | ||
---|---|---|---|---|
Metrics | RMSE | MAE | RMSE | MAE |
PMF | 0.9112 | 0.7988 | 1.4322 | 1.1616 |
DCF | 0.8568 | 0.7446 | 1.2572 | 1.0215 |
GCMC | 0.8371 | 0.6528 | 1.0941 | 0.9093 |
GraphRec | 0.8604 | 0.7815 | 1.1307 | 0.9453 |
F-EAE | 0.8409 | 0.6624 | 1.1032 | 0.9285 |
IGMC | 0.8351 | 0.6587 | 1.0767 | 0.9073 |
LNNSR | 0.7974 | 0.6519 | 1.0032 | 0.8504 |
Dataset | MovieLens-1M | Book-Crossing | ||||
---|---|---|---|---|---|---|
Metrics | MRR@10 | RECALL@10 | HR@10 | MRR@10 | RECALL@10 | HR@10 |
PMF | 0.3235 | 0.1535 | 0.5916 | 0.2235 | 0.1135 | 0.4316 |
NeuMF | 0.4246 | 0.1794 | 0.7031 | 0.2835 | 0.1335 | 0.4671 |
GCMC | 0.3784 | 0.1605 | 0.6063 | 0.3274 | 0.1485 | 0.5017 |
PinSage | 0.3741 | 0.1625 | 0.5987 | 0.3111 | 0.1342 | 0.4827 |
NGCF | 0.4563 | 0.1935 | 0.7376 | 0.3502 | 0.1531 | 0.5429 |
LNNSR | 0.4502 | 0.1812 | 0.7035 | 0.3513 | 0.1483 | 0.5478 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, Y.; Tao, Z. A Rating Prediction Recommendation Model Combined with the Optimizing Allocation for Information Granularity of Attributes. Information 2022, 13, 21. https://doi.org/10.3390/info13010021
Li J, Wang Y, Tao Z. A Rating Prediction Recommendation Model Combined with the Optimizing Allocation for Information Granularity of Attributes. Information. 2022; 13(1):21. https://doi.org/10.3390/info13010021
Chicago/Turabian StyleLi, Jianfei, Yongbin Wang, and Zhulin Tao. 2022. "A Rating Prediction Recommendation Model Combined with the Optimizing Allocation for Information Granularity of Attributes" Information 13, no. 1: 21. https://doi.org/10.3390/info13010021
APA StyleLi, J., Wang, Y., & Tao, Z. (2022). A Rating Prediction Recommendation Model Combined with the Optimizing Allocation for Information Granularity of Attributes. Information, 13(1), 21. https://doi.org/10.3390/info13010021