An Examination of Classical Art Impact and Popularity through Social Media Emotion Analysis of Art Memes and Museum Posts
Abstract
:1. Introduction
Aim and Research Questions
- Classification Task for both memes and museum posts:
- Emotion identification: What emotions inspire people to like, comment, and share posts?
- RQ1: How do likes, comments, frequency, and nwords relate to emotion?
- Ranking Task for both memes and museum posts:
- RQ2: What is the popularity of artistic memes?
- RQ3: What is the popularity of museum artworks?
2. Related Work
2.1. History and Virality of Internet Memes
2.2. Sharing Museum Art on Instagram
2.3. The Illusion of Popularity and Reputation
2.4. The Museum Experience
2.5. Analyzing Emotions
3. Methodology
3.1. Data Collection
3.1.1. Searching for Data
3.1.2. Downloading the Data
3.2. Pre-Processing and Transformation
3.3. Emotion Classification
4. Implementation and Results
4.1. Data Exploration
4.2. Classification Task and Findings
- Emotion Identification:What emotions inspire people to like, comment, and share posts?
- RQ1: How do likes, comments, frequency, and nwords relate to emotion?
4.3. Ranking Task and Findings
4.3.1. Data Handling
4.3.2. Implementation Outline
- RQ2: What is the popularity of artistic memes?
- RQ3: What is the popularity of museum artworks?
5. Limitations
6. Discussion
7. Conclusions and Further Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hays, S.; Page, S.J.; Buhalis, D. Social media as a destination marketing tool: Its use by national tourism organisations. Curr. Issues Tour. 2013, 16, 211–239. [Google Scholar] [CrossRef]
- Piata, A. Stylistic humor across modalities: The case of Classical Art Memes. Internet Pragmat. 2019, 3, 174–201. [Google Scholar] [CrossRef]
- Abuhashesh, M.Y.; Al-Dmour, H.; Masa’deh, R.; Salman, A.; Al-Dmour, R.; Boguszewicz-Kreft, M.; AlAmaireh, Q.N. The Role of Social Media in Raising Public Health Awareness during the Pandemic COVID-19: An International Comparative Study. Informatics 2021, 8, 80. [Google Scholar] [CrossRef]
- MacDowall, L.; Budge, K. Art After Instagram: Art Spaces, Audiences, Aesthetics, 1st ed.; Routledge: Abingdon-on-Thames, UK, 2021. [Google Scholar] [CrossRef]
- Liebhart, K.; Bernhardt, P. Political storytelling on Instagram: Key aspects of Alexander Van der Bellen’s successful 2016 presidential election campaign. Media Commun. 2017, 5, 15–25. [Google Scholar] [CrossRef]
- Dawson, A. Instagram Overtakes Twitter as Most Popular Platform for Museums during COVID-19 Pandemic. The Art Newspaper. Available online: https://www.theartnewspaper.com/2021/03/29/instagram-overtakes-twitter-as-most-popular-platform-for-museums-during-covid-19-pandemic (accessed on 29 March 2021).
- Manovich, L. Instagram and Contemporary Image. 2017. Available online: http://manovich.net/index.php/projects/instagram-and-contemporary-image (accessed on 1 February 2020).
- Varutti, M. The “Emotional Turn” in Museum Practice. ICOM. Available online: https://icom.museum/en/news/the-emotional-turn-in-museum-practice/?fbclid=IwAR2BknzRbpgEetbxxSexQ4vNLlO6-7CGmgiuXVm2-MRYU18tEOQSP0b2vgs (accessed on 19 September 2022).
- Wilkinson, C. Museums Association. Available online: https://www.museumsassociation.org/museums-journal/news/2021/01/what-activities-are-museums-offering-for-the-latest-lockdown/# (accessed on 15 January 2021).
- Sinek, S. Start with Why: How Great Leaders Inspire Everyone to Take Action; Penguin Books: London, UK, 2011. [Google Scholar]
- Chen, J. Important Instagram Stats You Need to Know for 2020. Sprout Social. Available online: https://sproutsocial.com/insights/instagram-stats/ (accessed on 15 September 2020).
- Manovich, L. Symposium by National Museum of Modern and Contemporary Art, Korea (MMCA), September 2021. Medium. Available online: https://medium.com/@manovich/museums-and-metaverse-53bad9570378 (accessed on 10 April 2022).
- Jennings, G.; Cullen, J.; Bryant, J.; Bryant-Greenwell, K.; Mann, S.; Hove, C.; Zepeda, N. The Empathetic Museum: A New Institutional Identity. Curator 2019, 62, 505–526. [Google Scholar] [CrossRef]
- Leaver, T.; Highfield, T.; Abidin, C. Instagram: Visual social media cultures. Mob. Media Commun. 2020, 8, 439–440. [Google Scholar] [CrossRef]
- Kontareva, A.; Ryzhakov, N.; Rudenko, N. Using Instagram Data in Museum Studies: What Can Color Patterns Say about a Museum Visit? Available online: https://www.academia.edu/42878583/Using_Instagram_Data_in_Museum_Studies_What_Can_Color_Patterns_Say_about_a_Museum_Visit (accessed on 15 August 2022).
- Pelowski, M.; Markey, P.S.; Lauring, J.O.; Leder, H. Visualizing the Impact of Art: An Update and Comparison of Current Psychological Models of Art Experience. Front. Hum. Neurosci. 2016, 10, 160. [Google Scholar] [CrossRef]
- Al-Rawi, A.; Al-Musalli, A.; Fakida, A. News Values on Instagram: A Comparative Study of International News. J. Media 2021, 2, 305–320. [Google Scholar] [CrossRef]
- Serra, S.E.; Fidler, S.; Moreno-Noguer, F.; Urtasun, R. Neuroaesthetics in fashion: Modeling the perception of fashionability. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Leban, M.; Thomsen, T.U.; von Wallpach, S.; Voyer, B.G. Constructing Personas: How High-Net-Worth Social Media Influencers Reconcile Ethicality and Living a Luxury Lifestyle. J. Bus. Ethics 2021, 169, 225–239. [Google Scholar] [CrossRef]
- Kováčová, D. Becoming #Instafamous: The analysis of (in)formality in self-presentation on Instagram. Internet Pragmat. 2021, 5, 12–37. [Google Scholar] [CrossRef]
- Budge, K.; Burness, A. Museum objects and Instagram: Agency and communication in digital engagement. Continuum 2018, 32, 137–150. [Google Scholar] [CrossRef]
- Piancatelli, C.; Massi, M.; Vocino, A. #artoninstagram: Engaging with art in the era of the selfie. Int. J. Mark. Res. 2021, 63, 134–160. [Google Scholar]
- Abidin, C. “Aren’t These Just Young, Rich Women Doing Vain Things Online?”: Influencer Selfies as Subversive Frivolity. Soc. Media + Soc. 2016, 2, 2056305116641342. [Google Scholar] [CrossRef]
- Tate Modern. Classicism. Tate Modern. Available online: https://www.tate.org.uk/art/art-terms/c/classicism (accessed on 31 July 2022).
- Caves, R.W. Encyclopedia of the City; Routledge: Abingdon-on-Thames, UK, 2004; p. 112. [Google Scholar]
- “Popular”. Merriam-Webster.com Dictionary, Merriam-Webster. Available online: https://www.merriam-webster.com/dictionary/popularity (accessed on 31 July 2022).
- Dawkins, R. The Selfish Gene; Oxford University Press: New York, NY, USA, 1975. [Google Scholar]
- Shifman, L. The Cultural Logic of Photo-Based Meme Genres. J. Vis. Cult. 2014, 13, 340–358. [Google Scholar] [CrossRef]
- Chatzidakis, A. Why Memes are More Than Just Entertainment—They’re a Form of Cultural Expression. Grazia. Available online: https://graziadaily.co.uk/life/opinion/memes-just-entertainment/ (accessed on 30 June 2017).
- Wang, J.; Wang, H. From a marketplace to a cultural space: Online meme as an operational unit of cultural transmission. J. Technol. Writ. Commun. 2015, 45, 261–274. [Google Scholar] [CrossRef]
- Shifman, L. Memes in a digital world: Reconciling with a conceptual troublemaker. J. Comput.-Mediat. Commun. 2013, 18, 362–377. [Google Scholar] [CrossRef]
- Blackmore, S. The Meme Machine; Oxford University Press: Oxford, UK, 2000; Volume 25. [Google Scholar]
- Davison, P. On the language of internet memes. In The Social Media Reader; New York University Press: New York, NY, USA, 2012; pp. 120–134. [Google Scholar]
- Lonnberg, A.; Xiao, P.; Wolfinger, K. The growth, spread, and mutation of internet phenomena: A study of memes. Results Appl. Math. 2020, 6, 100092. [Google Scholar] [CrossRef]
- Bauckhage, C.; Kersting, K.; Hadiji, F. Mathematical models of fads explain the temporal dynamics of internet memes. In Proceedings of the 7th International Conference on Weblogs and Social Media (ICWSM 2013), Cambridge, MA, USA, 8–11 July 2013; pp. 22–30. [Google Scholar]
- Keener, K. The RISE and Impact of the “Instagram Museum”, Art Critique. Available online: https://www.art-critique.com/en/2019/01/the-rise-and-impact-of-the-instagram-museum/ (accessed on 4 January 2022).
- Museum Next. Is Instagram Culture a Positive Influence for Museums? Museum Next. Available online: https://www.museumnext.com/article/is-instagram-culture-a-positive-influence-for-museums/ (accessed on 9 July 2022).
- Suess, A. Instagram and art gallery visitors: Aesthetic experience, space, sharing and implications for educators. Aust. Art Educ. 2018, 39, 107–122. [Google Scholar]
- Stylianou-Lambert, T. Photographing in the Art Museum: Visitor Attitudes and Motivations. Visit. Stud. 2017, 20, 114–137. [Google Scholar] [CrossRef]
- Budge, K. Visitors in immersive museum spaces and Instagram: Self, place-making, and play. J. Public Space 2018, 3, 121–138. [Google Scholar] [CrossRef]
- Tifentale, A.; Manovich, L. Selfiecity: Exploring photography and self-fashioning in social media. In Postdigital Aesthetics; Berry, D.M., Dieter, M., Eds.; Palgrave Macmillan: London, UK, 2015. [Google Scholar] [CrossRef] [Green Version]
- Raphelson, S. ‘I Came, I Saw, I Selfied’: How Instagram Transformed the Way We Experience Art. NPR. Available online: https://www.npr.org/2017/12/13/570558113/i-came-i-saw-i-selfied-how-instagram-transformed-the-way-we-experience-art (accessed on 13 December 2021).
- Heydeman, S. A Short History of These Selfie. ABC. Available online: http://www.abc.net.au/radionational/programs/booksandartsdaily/a-short-history-of-theselfie/5437148/ (accessed on 7 May 2022).
- Burness, A. What’s the Difference between a Selfie and a Self-Portrait? Museum in a Bottle. Available online: http://museuminabottle.com/2015/01/22/whats-thedifference-between-a-selfie-and-a-self-portrait/ (accessed on 22 January 2022).
- Kozinets, R.; Gretzel, U.; Dinhopl, A. Self in Art/Self as Art: Museum Selfies as Identity Work. Front. Psychol. 2017, 8, 731. [Google Scholar] [CrossRef] [PubMed]
- Chlebus-Grudzień, P. Selfie at museum: Defining a paradigm for an analysis of taking (self-portrait) photographs at museum exhibitions. Tourism/Turyzm 2018, 28, 7–13. [Google Scholar] [CrossRef]
- Spiegel, A. Good Art is Popular Because Its Goo. Right? NPR. Available online: https://www.npr.org/2014/02/27/282939233/good-art-is-popular-because-its-good-right?t=1638813079611 (accessed on 27 February 2021).
- Miller, J. What Makes Art Popular? Science Says It’s Luck, and the Opinion of Others. Available online: https://www.fastcompany.com/3027193/what-makes-art-popular-science-says-its-luck-and-the-opinion-of-others (accessed on 3 May 2022).
- Wang, V.; Wang, D. The Impact of the Increasing Popularity of Digital Art on the Current Job Market for Artists. Art Des. Rev. 2021, 9, 242–253. [Google Scholar] [CrossRef]
- Mitali, B.; Ingram, P.L. Fame as an Illusion of Creativity: Evidence from the Pioneers of Abstract Art. HEC Paris Research Paper No. SPE-2018-1305. Columbia Business School Research Paper. 2018, pp. 18–74. Available online: https://ssrn.com/abstract=3258318 (accessed on 1 January 2021).
- Quemin, A. Can Contemporary Art Galleries be ranked? A Sociological Attempt from the Paris Case. In The Sociology of Arts and Markets: New Developments and Persistent Patterns; Glauser, A., Holder, P., Mazzurana, T., Moeschler, O., Rolle, V., Schultheis, F., Eds.; Palgrave Macmillan: London, UK, 2020; pp. 339–362. [Google Scholar]
- Cleeremans, A.; Ginsburgh, V.; Klein, O.; Noury, A.G. What’s in a Name? The Effect of an Artist’s Name on Aesthetic Judgements; Working Papers ECARES ECARES 2016-23; Universite Libre de Bruxelles (ULB): Brussels, Belgium, 2016. [Google Scholar]
- Kang, X.; Chen, W.; Kang, J. Art in the Age of Social Media: Interaction Behavior Analysis of Instagram Art Accounts. Informatics 2019, 6, 52. [Google Scholar] [CrossRef]
- Vlachou, S.; Panagopoulos, M. The Arc de Triomphe, Wrapped: Measuring Public Installation Art Engagement and Popularity through Social Media Data Analysis. Informatics 2022, 9, 41. [Google Scholar] [CrossRef]
- Pelowski, M. Tears and transformation: Feeling like crying as an indicator of insightful or “aesthetic” experience with art. Front. Psychol. 2015, 6, 1006. [Google Scholar] [CrossRef]
- Pelowski, M.; Forster, M.; Tinio, P. Beyond the lab: An examination of key factors influencing interaction with ‘real’ and museum-based art. Psychol. Aesthet. Creat. Arts 2017, 11, 245–264. [Google Scholar] [CrossRef]
- Csíkszentmihályi, M. Beyond Boredom and Anxiety; Jossey-Bass: San Francisco, CA, USA, 1975. [Google Scholar]
- Csíkszentmihályi, M.; Rathunde, K. The measurement of flow in everyday life: Towards a theory of emergent motivation. In Developmental Perspectives on Motivation; Nebraska Symposium on Motivation; Jacobs, J.E., Ed.; University of Nebraska Press: Lincoln, NE, USA, 1992; Volume 40, pp. 57–98. [Google Scholar]
- Leder, H.; Belke, B.; Oeberst, A.; Augustin, D. A model of aesthetic appreciation and aesthetic judgments. Br. J. Psychol. 2004, 95, 489–508. [Google Scholar] [CrossRef]
- Praveena, T.; Lakshmi, N. An Overview of Social Media Analytics. Int. J. Adv. Sci. Technol. Eng. Manag. Sci. 2017, 3, 137–141. [Google Scholar]
- Rahman, M.M.; Islam, M.N. Exploring the performance of ensemble machine learning classifiers for sentiment analysis of COVID-19 tweets. In Sentimental Analysis and Deep Learning; Advances in Intelligent Systems and, Computing; Shakya, S., Balas, V.E., Kamolphiwong, S., Du, K.L., Eds.; Springer: Singapore, 2022; Volume 1408. [Google Scholar] [CrossRef]
- Valle-Cruz, D.; Fernandez-Cortez, V.; López-Chau, A.; Sandoval-Almazán, R. Does Twitter Affect Stock Market Decisions? Financial Sentiment Analysis During Pandemics: A Comparative Study of the H1N1 and the COVID-19 Periods. Cogn Comput. 2022, 14, 372–387. [Google Scholar] [CrossRef]
- Alonso, M.A.; Vilares, D.; Gómez-Rodríguez, C.; Vilares, J. Sentiment Analysis for Fake News Detection. Electronics 2021, 10, 1348. [Google Scholar] [CrossRef]
- Scheibe, K.; Nikolic, J.; Stock, W.; Philipps, J. A sentiment analysis on Miley Cyrus’ Instagram accounts. In Proceedings of the European Conference on Social Media (ECSM 2018), Limerick, Ireland, 21–22 June 2018. [Google Scholar]
- Aisyah, M.; Bambang, N.; Prastowo, D.; Utami, K.P. Sentiment Analysis with Sarcasm Detection on Politician’s Instagram. IJCCSIndones. J. Comput. Cybern. Syst. 2021, 15, 349–358. [Google Scholar] [CrossRef]
- Alzamzami, F.; Hoda, M.; Saddik, A.E. Light Gradient Boosting Machine for General Sentiment Classification on Short Texts: A Comparative Evaluation. IEEE Access 2020, 8, 101840–101858. [Google Scholar] [CrossRef]
- Park, S.; Bae, B.; Cheong, Y. Emotion Recognition from Text Stories Using an Emotion Embedding Model. In Proceedings of the IEEE International Conference on Big Data and Smart Computing (BigComp), Busan, Korea, 19–22 February 2020; pp. 579–583. [Google Scholar] [CrossRef]
- Asghar, M.Z.; Khan, A.; Bibi, A.; Kundi, F.M.; Ahmad, H. Sentence-Level Emotion Detection Framework Using Rule-Based Classification. Cogn. Comput. 2017, 9, 868–894. [Google Scholar] [CrossRef]
- Dash, A.; Zhang, D.; Zhou, L. Personalized Ranking of Online Reviews Based on Consumer Preferences in Product Features. Int. J. Electron. Commer. 2021, 25, 29–50. [Google Scholar] [CrossRef]
- Sidana, S.; Trofimov, H.; Horodnitskii, O.; Laclau, C.; Maximov, Y.; Amini, M.R. Representation Learning and Pairwise Ranking for Implicit Feedback in Recommendation Systems. arXiv 2017. [Google Scholar] [CrossRef]
- Segev, N.; Avigdor, N.; Avigdor, E. Measuring influence on Instagram: A network-oblivious approach. In Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR ‘18), Ann Arbor, MI, USA, 8–12 July 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1009–1012. [Google Scholar] [CrossRef]
- Saifullah, S. Fuzzy-AHP approach using Normalized Decision Matrix on Tourism Trend Ranking based-on Social Media. J. Inform. 2019, 13, 16–23. [Google Scholar] [CrossRef]
- Graham, T.; Rodriguez, A. The Sociomateriality of Rating and Ranking Devices on Social Media: A Case Study of Reddit’s Voting Practices. Soc. Media Soc. 2021, 7, 20563051211047667. [Google Scholar] [CrossRef]
- Cui, H.; Kertész, J. Attention dynamics on the Chinese social media Sina Weibo during the COVID-19 pandemic. EPJ Data Sci. 2021, 10, 8. [Google Scholar] [CrossRef]
- Hruska, L.; Maresova, P. Use of social media platforms among adults in the United States–behavior on social media. Societies 2020, 10, 27. [Google Scholar] [CrossRef]
- Instaloader. Available online: https://github.com/instaloader/instaloader (accessed on 12 April 2022).
- Reback, J.; McKinney, W.; Jbrockmendel; Van den Bossche, J.; Augspurger, T.; Cloud, P.; Gfyoung; Sinhrks; Klein, A.; Roeschke, M.; et al. Pandas-dev/Pandas: Pandas, version 1.0.3; Zenodo: Geneva, Switzerland, 2020. [Google Scholar] [CrossRef]
- Verborgh, R.; De Wilde, M. Using OpenRefine, 1st ed.; Packt Publishing: Birmigham, UK, 2013. [Google Scholar]
- Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; et al. API design for machine learning software: Experiences from the SciKit-learn project. arXiv 2013. [Google Scholar] [CrossRef]
- Bird, S.; Klein, E.; Loper, E. Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2009. [Google Scholar]
- Hutto, C.J.; Gilbert, E.E. VADER: A parsimonious rule-based model for sentiment analysis of social media text. In Proceedings of the Eighth International Conference on Weblogs and Social Media (ICWSM-14), Ann Arbor, MI, USA, 1–4 June 2014. [Google Scholar]
- Shaver, P.; Schwartz, J.; Kirson, D.; O’Connor, C. Emotion knowledge: Further exploration of a prototype approach. J. Personal. Soc. Psychol. 1987, 52, 1061–1086. [Google Scholar] [CrossRef]
- Parrott, W. Emotions in Social Psychology: Key Readings in Social Psychology; Psychology Press: Philadelphia, PA, USA, 2001; ISBN 9780863776830. [Google Scholar]
- Thoits, P.A. Emotional deviance: Research agendas. In Research Agendas in the Sociology of Emotions; Kemper, T.D., Ed.; State University of New York Press: Albany, NY, USA, 1990; pp. 180–203. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154. [Google Scholar]
- Lemaître, G.; Nogueira, F.; Aridas, C.K. Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. J. Mach. Learn. Res. 2017, 18, 559–563. [Google Scholar]
- Nitesh, C.V.; Kevin, W.; Bowyer, L.; Hall, O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Int. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Haibo, H.; Yunqian, M. Imbalanced Learning: Foundations, Algorithms, and Applications; Wiley-IEEE Press: New York, NY, USA, 2013. [Google Scholar]
- Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A New over-sampling method in imbalanced data sets learning. In Advances in Intelligent Computing (ICIC 2005); Lecture Notes in Computer Science; Huang, D.S., Zhang, X.P., Huang, G.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees, 1st ed.; Routledge: Abingdon-on-Thames, UK, 1984. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995; ISBN 9780387987804. [Google Scholar]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Mazloom, M.; Pappi, I.; Worring, M. Category specific post popularity prediction. In Proceedings of the 24th International Conference (MMM 2018), Bangkok, Thailand, 5–7 February 2018. [Google Scholar] [CrossRef]
- Ortis, A.; Farinella, G.; Battiato, S. An Overview on Image Sentiment Analysis: Methods, Datasets and Current Challenges. In Proceedings of the 16th International Joint Conference on e-Business and Telecommunications (ICETE 2019), Prague, Czech Republic, 26–28 July 2019; pp. 290–300. [Google Scholar] [CrossRef]
- Giannoulakis, S.; Tsapatsoulis, N. Evaluating the descriptive power of Instagram hashtags. J. Innov. Digit. Ecosyst. 2016, 3, 114–129. [Google Scholar] [CrossRef]
- Hu, Y.; Da, Q.; Zeng, A.; Yu, Y.; Xu, Y. Reinforcement learning to rank in E-commerce search engine: Formalization, analysis, and application. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ‘18), London, UK, 19–23 August 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 368–377. [Google Scholar] [CrossRef]
- Geyik, S.C.; Ambler, S.; Kenthapadi, K. Fairness-aware ranking in search & recommendation systems with application to LinkedIn talent search. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ‘19), Anchorage, AK, USA, 4–8 August 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 2221–2231. [Google Scholar] [CrossRef]
- Hashemi, A.; Bagher Dowlatshahi, M.; Nezamabadi-pour, H. MGFS: A multi-label graph-based feature selection algorithm via PageRank centrality. Expert Syst. Appl. 2020, 142, 113024. [Google Scholar] [CrossRef]
- Ursu, R.M. The Power of Rankings: Quantifying the Effect of Rankings on Online Consumer Search and Purchase Decisions. Mark. Sci. 2018, 37, 530–552. [Google Scholar] [CrossRef]
- Tahery, S.; Farzi, S. Customized query auto-completion and suggestion—A review. Inf. Syst. 2020, 87, 101415. [Google Scholar] [CrossRef]
- Wang, L.; Qian, X.; Zhang, Y.; Shen, J.; Cao, X. Enhancing Sketch-Based Image Retrieval by CNN Semantic Re-ranking. IEEE Trans. Cybern. 2020, 50, 3330–3342. [Google Scholar] [CrossRef]
- Shervin, M. 20 Popular Machine Learning Metrics. Part 2: Ranking, & Statistical Metrics. Towards Data Science. Available online: https://towardsdatascience.com/20-popular-machine-learning-metrics-part-2-ranking-statistical-metrics-22c3e5a937b6 (accessed on 5 June 2022).
- Burges, C.J.C. From RankNet to LambdaRank to LambdaMART: An Overview; Microsoft Research Technical Report; Microsoft: Redmond, WA, USA, 2010. [Google Scholar]
- Garcia, D.; Mavrodiev, P.; Casati, D.; Schweitzer, F. Understanding Popularity, Reputation, and Social Influence in the Twitter Society. Policy Internet 2017, 9, 343–364. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.S. Music popularity: Metrics, characteristics, and audio-based prediction. IEEE Trans. Multimed. 2018, 20, 3173–3182. [Google Scholar] [CrossRef]
- Chapelle, O.; Chang, Y. Yahoo! Learning to Rank Challenge Overview. J. Mach. Learn. Res. 2011, 14, 1–24. [Google Scholar]
- Jarvelin, K.; Kekalainen, J. IR evaluation methods for retrieving highly relevant documents. In Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), Athens, Greece, 24–28 July 2000; pp. 41–48. [Google Scholar]
- Dandekar, N. Pointwise vs. Pairwise vs. Listwise Learning to Rank. Medium. 2016. Available online: https://medium.com/@nikhilbd/pointwise-vs-pairwise-vs-listwise-learning-to-rank-80a8fe8fadfd (accessed on 13 July 2022).
- Nieubuurt, J.T. Internet Memes: Leaflet Propaganda of the Digital Age. Front. Commun. 2021, 5, 54. [Google Scholar] [CrossRef]
- Wiggins, B. The Discursive Power of Memes in Digital Culture: Ideology, Semiotics, and Intertextuality; Routledge: Abingdon-on-Thames, UK, 2019. [Google Scholar] [CrossRef]
- Wagener, A. The Postdigital Emergence of Memes and GIFs: Meaning, Discourse, and Hypernarrative Creativity. Postdigit. Sci. Educ. 2021, 3, 831–850. [Google Scholar] [CrossRef]
- Zhe, C.; Tao, Q.; Tie-Yan, L.; Ming-Feng, T.; Hang, L. Learning to rank: From pairwise approach to listwise approach. In Proceedings of the 24th International Conference on Machine Learning, Corvalis, OR, USA, 20–24 June 2007; Volume 227, pp. 129–136. [Google Scholar] [CrossRef]
- Manovich, L. The aesthetic society: Or how I edit my Instagram. In Data Publics; Mörtenboeck, P., Mooshammer, H., Eds.; Routledge: Abbington-on-Thames, UK, 2020. [Google Scholar] [CrossRef]
Artistic Memes Dataset | |||||
Memes Frequency (N = 1222) min = 10, max = 34, mean = 12.54, std = 4.25 | |||||
Features | N | Minimum | Maximum | Mean | Std. Deviation |
Comments | 1222 | 40.00 | 40,089.00 | 2808.37 | 6734.39 |
Likes | 1222 | 902.00 | 756,445.00 | 122,176.18 | 106,819.72 |
Nwords | 1222 | 0.00 | 627.00 | 134.13 | 103.45 |
Museum Posts Dataset | |||||
Post Frequency (N = 3304) min = 4, max = 384, mean = 35.55, std = 42.30 | |||||
Features | N | Minimum | Maximum | Mean | Std. Deviation |
Comments | 3304 | 17.00 | 13,030.00 | 681.46 | 1238.94 |
Likes | 3304 | 51.00 | 397,639.00 | 24,692.29 | 42,526.43 |
Nwords | 3304 | 16.00 | 28,461.00 | 1968.46 | 2890.32 |
Memes Emotion | N | Frequency | Museum Posts Emotion | N | Frequency |
---|---|---|---|---|---|
Cheerfulness | 1222 | 249 | Cheerfulness | 3304 | 997 |
Lust | 1222 | 511 | Lust | 3304 | 1101 |
Surprise | 1222 | 462 | Surprise | 3304 | 1306 |
Valid N | 1222 | Valid N | 3304 |
Artistic Memes Dataset (N = 1222) | ||||
Emotion | Precision | Recall | f1-Score | Support |
cheerfulness | 0.86 | 1.00 | 0.92 | 6.00 |
lust | 1.00 | 1.00 | 1.00 | 4.00 |
surprise | 1.00 | 0.88 | 0.93 | 8.00 |
accuracy | 0.94 | 18.00 | ||
macro avg | 0.95 | 0.96 | 0.95 | 18.00 |
weighted avg | 0.95 | 0.94 | 0.94 | 18.00 |
Museum Posts Dataset (N = 3304) | ||||
Emotion | Precision | Recall | f1-Score | Support |
cheerfulness | 0.67 | 0.67 | 0.67 | 6.00 |
lust | 0.78 | 0.78 | 0.78 | 9.00 |
surprise | 1.00 | 1.00 | 1.00 | 5.00 |
accuracy | 0.80 | 20.00 | ||
macro avg | 0.81 | 0.81 | 0.81 | 20.00 |
weighted avg | 0.80 | 0.80 | 0.80 | 20.00 |
Artistic Memes Dataset (N = 1222) | ||||
Emotion | Precision | Recall | f1-Score | Support |
cheerfulness | 0.86 | 1.00 | 0.92 | 6 |
lust | 1.00 | 1.00 | 1.00 | 4 |
surprise | 1.00 | 0.88 | 0.93 | 8 |
accuracy | 0.94 | 18 | ||
macro avg | 0.95 | 0.96 | 0.95 | 18 |
weighted avg | 0.95 | 0.94 | 0.94 | 18 |
Museum Posts Dataset (N = 3304) | ||||
Emotion | Precision | Recall | f1-Score | Support |
cheerfulness | 0.75 | 1.00 | 0.86 | 6 |
lust | 1.00 | 0.78 | 0.88 | 9 |
surprise | 1.00 | 1.00 | 1.00 | 5 |
accuracy | 0.90 | 20 | ||
macro avg | 0.92 | 0.93 | 0.91 | 20 |
weighted avg | 0.93 | 0.90 | 0.90 | 20 |
The Final Rank of the Most Popular Classical Art Memes (N = 91) | ||||
---|---|---|---|---|
Classical Art Meme | Artist | Group id | Predicted Ranking Score | |
1. | The Soul of the Rose | John William Waterhouse | 39 | 8.57 |
2. | The Bookworm | Carl Spitzweg | 62 | 8.23 |
3. | The Blessing Christ | Jean Auguste Dominique Ingres | 1 | 8.15 |
4. | Mars & Venus, Allegory of Peace | Louis Jean François Lagrenée | 97 | 7.98 |
5. | Portrait of Cardinal Pietro Bembo | Tiziano Vecelli | 74 | 7.98 |
6. | Portrait of a Man | Hans Memling | 101 | 7.74 |
7. | La Pensée (The Thought) | Jean Despujols | 105 | 7.70 |
The Final Rank of the Most Popular Museum Visitor’s Posts (N = 91) | ||||
---|---|---|---|---|
Artwork | Artist | Group id | Predicted Ranking Score | |
1. | Charles I in Three Positions | Anthony van Dyck | 9 | 10.05 |
2. | The Blessing Christ | Jean Auguste Dominique Ingres | 1 | 10.05 |
3. | The Soul of the Rose | John William Waterhouse | 39 | 10.05 |
4. | The Love Potion | Evelyn de Morgan | 96 | 10.00 |
5. | The Bookworm | Carl Spitzweg | 62 | 9.72 |
6. | Travesuras de la Modelo | Raimundo de Madrazo y Garreta | 103 | 9.72 |
7. | Carolus Duran | John Singer Sargent | 106 | 9.69 |
8. | The Proposition | Arturo Ricci | 107 | 9.69 |
9. | The Unconditional Lover | Vittorio Reggianini | 94 | 9.69 |
10. | A Girl with a Dead Canary | Jean Baptiste Greuze | 102 | 9.69 |
11. | Mars & Venus, Allegory of Peace | Louis Jean François Lagrenée | 97 | 9.69 |
12. | Gathering Flowers | Albert Lynch | 95 | 9.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlachou, S.; Panagopoulos, M. An Examination of Classical Art Impact and Popularity through Social Media Emotion Analysis of Art Memes and Museum Posts. Information 2022, 13, 468. https://doi.org/10.3390/info13100468
Vlachou S, Panagopoulos M. An Examination of Classical Art Impact and Popularity through Social Media Emotion Analysis of Art Memes and Museum Posts. Information. 2022; 13(10):468. https://doi.org/10.3390/info13100468
Chicago/Turabian StyleVlachou, Sofia, and Michail Panagopoulos. 2022. "An Examination of Classical Art Impact and Popularity through Social Media Emotion Analysis of Art Memes and Museum Posts" Information 13, no. 10: 468. https://doi.org/10.3390/info13100468
APA StyleVlachou, S., & Panagopoulos, M. (2022). An Examination of Classical Art Impact and Popularity through Social Media Emotion Analysis of Art Memes and Museum Posts. Information, 13(10), 468. https://doi.org/10.3390/info13100468