Research on Apparel Retail Sales Forecasting Based on xDeepFM-LSTM Combined Forecasting Model
Abstract
:1. Introduction
2. Methods and Models
2.1. Principle of the xDeepFM Algorithm
2.2. Principle of LSTM Algorithm
3. xDeepFM-LSTM Combined Forecasting Model
4. Example Analysis
4.1. Experimental Data Description and Pre-Processing
4.2. Selection of Evaluation Indicators
4.3. xDeepFM-LSTM Sales Forecasting Model Implementation
4.4. Analysis of Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, F.L.; Lin, Y.Y.; Huang, J.X.; Wu, D.; Shi, H.Z.; Song, J.; Li, Y. Big Data Driven Mobile Traffic Understanding and Forecasting: A Time Series Approach. IEEE Trans. Serv. Comput. 2016, 9, 796–805. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, J.G. A Fusion Transformer for Multivariable Time Series Forecasting: The Mooney Viscosity Prediction Case. Entropy 2022, 24, 528. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulos, O.P.; Xanthopoulos, P.; Razzaghi, T.; Seref, O. Relaxed support vector regression. Ann. Oper. Res. 2019, 276, 191–210. [Google Scholar] [CrossRef]
- Jin, Y.H.; Lee, K.H.; Choi, D.W. QueryNet: Querying neural networks for lightweight specialized models. Inf. Sci. 2022, 589, 186–198. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, S.J. Flexible Forecasting Model Based on Neural Networks. Wirel. Pers. Commun. 2017, 94, 283–300. [Google Scholar] [CrossRef]
- Shi, J.M.; Leau, Y.B.; Li, K.; Park, Y.J.; Yan, Z.W. Optimization and Decomposition Methods in Network Traffic Prediction Model: A Review and Discussion. IEEE Access 2020, 8, 202858–202871. [Google Scholar] [CrossRef]
- Pholsena, K.; Pan, L.; Zheng, Z.P. Mode decomposition based deep learning model for multi-section traffic prediction. World Wide Web 2020, 23, 2513–2527. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.D.; Zhang, Q.P.; Li, X. Fuzzy factorization machine. Inf. Sci. 2021, 546, 1135–1147. [Google Scholar] [CrossRef]
- Lang, F.; Liang, L.L.; Huang, K.; Chen, T.; Zhu, S.X. Movie Recommendation System for Educational Purposes Based on Field-Aware Factorization Machine. Mob. Netw. Appl. 2021, 26, 2199–2205. [Google Scholar] [CrossRef]
- Ding, Y.L.; Lei, X.J.; Liao, B.; Wu, F.X. MLRDFM: A multi-view Laplacian regularized DeepFM model for predicting miRNA-disease associations. Brief. Bioinform. 2022, 23, bbac079. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shen, W.; Huang, J.; Li, S.; Pan, G. Field-Aware Neural Factorization Machine for Click-Through Rate Prediction. IEEE Access 2019, 7, 75032–75040. [Google Scholar] [CrossRef]
- Gilbert, K. An ARIMA supply chain model. Manag. Sci. 2005, 51, 305–310. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Dang, Y.G.; Ding, S. Forecasting air quality in China using novel self-adaptive seasonal grey forecasting models. Grey Syst. Theory Appl. 2021, 11, 596–618. [Google Scholar] [CrossRef]
- Wang, Q.; Song, X.X.; Li, R.R. A novel hybridization of nonlinear grey model and linear ARIMA residual correction for forecasting US shale oil production. Energy 2018, 165, 1320–1331. [Google Scholar] [CrossRef]
- Wang, L.L.; Wang, C.Y.; Wang, F.W.; Chu, Y.H.; Yang, Z.D.; Wang, H. EPI phase error correction with deep learning (PEC-DL) at 7 T. Magn. Reson. Med. 2022, 88, 1775–1784. [Google Scholar] [CrossRef] [PubMed]
- Su, H.Y.; Tang, C. ynamic-Error-Compensation-Assisted Deep Learning Framework for Solar Power Forecasting. IEEE Trans. Sustain. Energy 2022, 13, 1865–1868. [Google Scholar] [CrossRef]
- Ghasemi, F.; Mehridehnavi, A.; Fassihi, A.; Perez-Sanchez, H. Deep neural network in QSAR studies using deep belief network. Appl. Soft Comput. 2018, 62, 251–258. [Google Scholar] [CrossRef]
- Chen, L.; Shi, H.Y. DexDeepFM: Ensemble Diversity Enhanced Extreme Deep Factorization Machine Model. ACM Trans. Knowl. Discov. Data 2022, 16, 1–17. [Google Scholar] [CrossRef]
- Qu, Y.R.; Fang, B.H.; Zhang, W.N.; Tang, R.M.; Niu, M.Z.; Guo, H.F.; Yu, Y.; He, X.Q. Product-Based Neural Networks for User Response Prediction over Multi-Field Categorical Data. ACM Trans. Inf. Syst. 2019, 37, 5. [Google Scholar] [CrossRef] [Green Version]
- Teng, S. Route planning method for cross-border e-commerce logistics of agricultural products based on recurrent neural network. Soft Comput. 2021, 25, 12107–12116. [Google Scholar] [CrossRef]
- Santra, A.S.; Lin, J.L. Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting. Energies 2019, 12, 2040. [Google Scholar] [CrossRef]
Description | Real-Life Dataset | Simulated Dataset |
---|---|---|
Mean | 211.93 | 277.91 |
Std | 155.22 | 188.16 |
Min | 60.00 | 60.00 |
25% | 108.00 | 116.00 |
50% | 151.00 | 177.00 |
75% | 256.00 | 284.00 |
Max | 1091.00 | 1095.00 |
Dataset | Forecasting Models | RMSE | RMSE_Me | RMSE_Std | MAE | MAE_Me | MAE_Std |
---|---|---|---|---|---|---|---|
Real-life data | Naive | 1.89 | 1.73 | 0.15 | 1.23 | 1.18 | 0.18 |
ARIMA | 1.85 | 1.76 | 0.13 | 1.18 | 1.12 | 0.16 | |
NN | 1.77 | 1.63 | 0.09 | 1.09 | 1.01 | 0.13 | |
SVR | 1.79 | 1.60 | 0.09 | 1.06 | 0.99 | 0.10 | |
CatBoost | 1.70 | 1.65 | 0.08 | 1.05 | 0.96 | 0.09 | |
LSTM | 1.40 | 1.38 | 0.07 | 0.91 | 0.88 | 0.09 | |
xDeepFM | 1.37 | 1.33 | 0.07 | 0.91 | 0.84 | 0.09 | |
xDeepFM_LSTM | 1.32 | 1.28 | 0.06 | 0.85 | 0.80 | 0.08 | |
Simulated data | Naive | 2.35 | 2.22 | 0.32 | 2.11 | 2.06 | 0.25 |
ARIMA | 2.22 | 2.10 | 0.30 | 2.02 | 1.95 | 0.27 | |
NN | 2.10 | 2.03 | 0.28 | 1.99 | 1.91 | 0.23 | |
SVR | 2.06 | 2.01 | 0.26 | 1.85 | 1.80 | 0.21 | |
CatBoost | 1.98 | 1.95 | 0.22 | 1.81 | 1.77 | 0.21 | |
LSTM | 1.95 | 1.87 | 0.18 | 1.76 | 1.72 | 0.19 | |
xDeepFM | 1.88 | 1.75 | 0.15 | 1.68 | 1.61 | 0.18 | |
xDeepFM_LSTM | 1.81 | 1.75 | 0.15 | 1.54 | 1.51 | 0.17 |
Dataset | Groups | Two-Sided (p-Value) | Greater (p-Value) |
---|---|---|---|
Real-life data | xDeepFM_LSTM vs. CatBoost | <0.001 * | <0.001 * |
xDeepFM_LSTM vs. LSTM | <0.001 * | <0.001 * | |
xDeepFM_LSTM vs. xDeepFM | <0.001 * | <0.001 * | |
Simulated data | xDeepFM_LSTM vs. CatBoost | <0.001 * | <0.001 * |
xDeepFM_LSTM vs. LSTM | <0.001 * | <0.001 * | |
xDeepFM_LSTM vs. xDeepFM | <0.001 * | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, T.; Chang, D.; Xu, Z. Research on Apparel Retail Sales Forecasting Based on xDeepFM-LSTM Combined Forecasting Model. Information 2022, 13, 497. https://doi.org/10.3390/info13100497
Luo T, Chang D, Xu Z. Research on Apparel Retail Sales Forecasting Based on xDeepFM-LSTM Combined Forecasting Model. Information. 2022; 13(10):497. https://doi.org/10.3390/info13100497
Chicago/Turabian StyleLuo, Tian, Daofang Chang, and Zhenyu Xu. 2022. "Research on Apparel Retail Sales Forecasting Based on xDeepFM-LSTM Combined Forecasting Model" Information 13, no. 10: 497. https://doi.org/10.3390/info13100497
APA StyleLuo, T., Chang, D., & Xu, Z. (2022). Research on Apparel Retail Sales Forecasting Based on xDeepFM-LSTM Combined Forecasting Model. Information, 13(10), 497. https://doi.org/10.3390/info13100497