Regularized Mixture Rasch Model
Abstract
:1. Introduction
2. Regularized Mixture Models
2.1. Two Alternative Approaches to Regularizing the Mixture Rasch Model
2.2. Estimation
2.3. Computation of Standard Errors
3. Simulation Study 1: Simulation Study Involving Two Latent Classes
3.1. Method
3.2. Results
4. Simulated Case Study 2: Illustrative Example with a Nonspeeded and a Speeded Latent Class
5. Simulated Case Study 3: Illustrative Example Involving Three Latent Classes
6. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIC | Akaike information criterion |
BIC | Bayesian information criterion |
DIF | differential item functioning |
EM | expectation maximization |
MRM | mixture Rasch model |
RM | Rasch model |
RMRM | regularized mixture Rasch model |
RMSE | root mean square error |
SCAD | smoothly clipped absolute deviation |
References
- Rasch, G. Probabilistic Models for Some Intelligence and Attainment Tests; Danish Institute for Educational Research: Copenhagen, Denmark, 1960. [Google Scholar]
- von Davier, M. The Rasch model. In Handbook of Item Response Theory, Volume 1: Models; van der Linden, W.J., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 31–48. [Google Scholar] [CrossRef]
- Debelak, R.; Strobl, C.; Zeigenfuse, M.D. An Introduction to the Rasch Model with Examples in R; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Robitzsch, A. A comprehensive simulation study of estimation methods for the Rasch model. Stats 2021, 4, 814–836. [Google Scholar] [CrossRef]
- Xu, X.; von Davier, M. Fitting the Structured General Diagnostic Model to NAEP Data; Research Report No. RR-08-28; Educational Testing Service: Princeton, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Rost, J. Rasch models in latent classes: An integration of two approaches to item analysis. Appl. Psychol. Meas. 1990, 14, 271–282. [Google Scholar] [CrossRef] [Green Version]
- von Davier, M.; Rost, J. Mixture distribution item response models. In Handbook of Statistics, Vol. 26: Psychometrics; Rao, C.R., Sinharay, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 26, pp. 643–661. [Google Scholar] [CrossRef]
- Frick, H.; Strobl, C.; Leisch, F.; Zeileis, A. Flexible Rasch mixture models with package psychomix. J. Stat. Softw. 2012, 48, 1–25. [Google Scholar] [CrossRef] [Green Version]
- von Davier, M. Mixture Distribution Diagnostic Models; (Research Report No. RR-07-32); Educational Testing Service: Princeton, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Paek, I.; Cho, S.J. A note on parameter estimate comparability: Across latent classes in mixture IRT modeling. Appl. Psychol. Meas. 2015, 39, 135–143. [Google Scholar] [CrossRef]
- Bulut, O.; Suh, Y. Detecting multidimensional differential item functioning with the multiple indicators multiple causes model, the item response theory likelihood ratio test, and logistic regression. Front. Educ. 2017, 2, 51. [Google Scholar] [CrossRef]
- Holland, P.W.; Wainer, H. (Eds.) Differential Item Functioning: Theory and Practice; Lawrence Erlbaum: Hillsdale, NJ, USA, 1993. [Google Scholar] [CrossRef]
- Penfield, R.D.; Camilli, G. Differential item functioning and item bias. In Handbook of Statistics, Volume 26: Psychometrics; Rao, C.R., Sinharay, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 125–167. [Google Scholar] [CrossRef]
- Cho, S.J.; Suh, Y.; Lee, W. An NCME instructional module on latent DIF analysis using mixture item response models. Educ. Meas. 2016, 35, 48–61. [Google Scholar] [CrossRef]
- Frick, H.; Strobl, C.; Zeileis, A. Rasch mixture models for DIF detection: A comparison of old and new score specifications. Educ. Psychol. Meas. 2015, 75, 208–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rost, J. A logistic mixture distribution model for polychotomous item responses. Br. J. Math. Stat. Psychol. 1991, 44, 75–92. [Google Scholar] [CrossRef]
- von Davier, M.; Rost, J. Polytomous mixed Rasch models. In Rasch Models; Fischer, G.H., Molenaar, I.W., Eds.; Springer: New York, NY, USA, 1995; pp. 371–379. [Google Scholar] [CrossRef]
- Choi, Y.J.; Alexeev, N.; Cohen, A.S. Differential item functioning analysis using a mixture 3-parameter logistic model with a covariate on the TIMSS 2007 mathematics test. Int. J. Test. 2015, 15, 239–253. [Google Scholar] [CrossRef]
- Formann, A.K.; Kohlmann, T. Structural latent class models. Sociol. Methods Res. 1998, 26, 530–565. [Google Scholar] [CrossRef]
- Formann, A.K.; Kohlmann, T. Three-parameter linear logistic latent class analysis. In Applied Latent Class Analysis; Hagenaars, J.A., McCutcheon, A.L., Eds.; Cambridge University Press: Cambridge, UK, 2002; pp. 183–210. [Google Scholar]
- Muthén, B.; Asparouhov, T. Item response mixture modeling: Application to tobacco dependence criteria. Addict. Behav. 2006, 31, 1050–1066. [Google Scholar] [CrossRef] [PubMed]
- Revuelta, J. Estimating the π* goodness of fit index for finite mixtures of item response models. Br. J. Math. Stat. Psychol. 2008, 61, 93–113. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Cohen, A.S. Applications of mixture IRT models: A literature review. Meas. Interdiscip. Res. Persp. 2019, 17, 177–191. [Google Scholar] [CrossRef]
- Smit, A.; Kelderman, H.; van der Flier, H. The mixed Birnbaum model: Estimation using collateral information. Methods Psychol. Res. Online 2000, 5, 31–43. [Google Scholar]
- Chen, Y.; Li, X.; Liu, J.; Ying, Z. Robust measurement via a fused latent and graphical item response theory model. Psychometrika 2018, 83, 538–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Chen, Y.; Liu, J.; Ying, Z.; Xin, T. Latent variable selection for multidimensional item response theory models via L1 regularization. Psychometrika 2016, 81, 921–939. [Google Scholar] [CrossRef]
- Huang, P.H.; Chen, H.; Weng, L.J. A penalized likelihood method for structural equation modeling. Psychometrika 2017, 82, 329–354. [Google Scholar] [CrossRef]
- Jacobucci, R.; Grimm, K.J.; McArdle, J.J. Regularized structural equation modeling. Struct. Equ. Model. 2016, 23, 555–566. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, X.; Liu, J.; Ying, Z. Regularized latent class analysis with application in cognitive diagnosis. Psychometrika 2017, 82, 660–692. [Google Scholar] [CrossRef]
- Robitzsch, A.; George, A.C. The R package CDM for diagnostic modeling. In Handbook of Diagnostic Classification Models; von Davier, M., Lee, Y.S., Eds.; Springer: Cham, Switzerland, 2019; pp. 549–572. [Google Scholar] [CrossRef]
- Robitzsch, A. Regularized latent class analysis for polytomous item responses: An application to SPM-LS data. J. Intell. 2020, 8, 30. [Google Scholar] [CrossRef]
- Belzak, W.; Bauer, D.J. Improving the assessment of measurement invariance: Using regularization to select anchor items and identify differential item functioning. Psychol. Methods 2020, 25, 673–690. [Google Scholar] [CrossRef] [PubMed]
- Bauer, D.J.; Belzak, W.C.M.; Cole, V.T. Simplifying the assessment of measurement invariance over multiple background variables: Using regularized moderated nonlinear factor analysis to detect differential item functioning. Struct. Equ. Model. 2020, 27, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, C.; Xu, G. DIF statistical inference and detection without knowing anchoring items. arXiv 2021, arXiv:2110.11112. [Google Scholar] [CrossRef]
- Gürer, C.; Draxler, C. Penalization approaches in the conditional maximum likelihood and Rasch modelling context. Br. J. Math. Stat. Psychol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Jacobucci, R. Regularized structural equation modeling to detect measurement bias: Evaluation of lasso, adaptive lasso, and elastic net. Struct. Equ. Model. 2020, 27, 722–734. [Google Scholar] [CrossRef]
- Tutz, G.; Schauberger, G. A penalty approach to differential item functioning in Rasch models. Psychometrika 2015, 80, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Schauberger, G.; Mair, P. A regularization approach for the detection of differential item functioning in generalized partial credit models. Behav. Res. Methods 2020, 52, 279–294. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.; Tibshirani, R.; Wainwright, M. Statistical Learning with Sparsity: The Lasso and Generalizations; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Fan, J.; Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 2001, 96, 1348–1360. [Google Scholar] [CrossRef]
- Tibshirani, R.; Saunders, M.; Rosset, S.; Zhu, J.; Knight, K. Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 91–108. [Google Scholar] [CrossRef] [Green Version]
- Tutz, G.; Gertheiss, J. Regularized regression for categorical data. Stat. Model. 2016, 16, 161–200. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Cohen, A.S.; Kim, S.H. Model selection for multilevel mixture Rasch models. Appl. Psychol. Meas. 2019, 43, 272–289. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, J.; Xu, G.; Ying, Z. Statistical analysis of Q-matrix based diagnostic classification models. J. Am. Stat. Assoc. 2015, 110, 850–866. [Google Scholar] [CrossRef] [Green Version]
- Battauz, M. Regularized estimation of the nominal response model. Multivar. Behav. Res. 2020, 55, 811–824. [Google Scholar] [CrossRef] [PubMed]
- Oelker, M.R.; Tutz, G. A uniform framework for the combination of penalties in generalized structured models. Adv. Data Anal. Classif. 2017, 11, 97–120. [Google Scholar] [CrossRef]
- Asparouhov, T.; Muthén, B. Random Starting Values and Multistage Optimization. Technical Report. 2019. Available online: https://bit.ly/3SCLTjt (accessed on 30 September 2022).
- Robitzsch, A. sirt: Supplementary Item Response Theory Models. R Package Version 3.12-66. 2022. Available online: https://CRAN.R-project.org/package=sirt (accessed on 17 May 2022).
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 11 January 2022).
- Liu, X.; Wallin, G.; Chen, Y.; Moustaki, I. Rotation to sparse loadings using Lp losses and related inference problems. arXiv 2022, arXiv:2206.02263. [Google Scholar] [CrossRef]
- Alexandrowicz, R.; Matschinger, H. Estimation of item location effects by means of the generalized logistic regression model: A simulation study and an application. Psychol. Sci. 2008, 50, 64–74. [Google Scholar]
- Jin, K.Y.; Wang, W.C. Item response theory models for performance decline during testing. J. Educ. Meas. 2014, 51, 178–200. [Google Scholar] [CrossRef]
- List, M.K.; Robitzsch, A.; Lüdtke, O.; Köller, O.; Nagy, G. Performance decline in low-stakes educational assessments: Different mixture modeling approaches. Large-Scale Assess. Educ. 2017, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Debeer, D.; Janssen, R. Modeling item-position effects within an IRT framework. J. Educ. Meas. 2013, 50, 164–185. [Google Scholar] [CrossRef]
- Hartig, J.; Buchholz, J. A multilevel item response model for item position effects and individual persistence. Psych. Test Assess. Model. 2012, 54, 418–431. [Google Scholar]
- Bolt, D.M.; Cohen, A.S.; Wollack, J.A. Item parameter estimation under conditions of test speededness: Application of a mixture Rasch model with ordinal constraints. J. Educ. Meas. 2002, 39, 331–348. [Google Scholar] [CrossRef]
- Maronna, R.A.; Martin, R.D.; Yohai, V.J. Robust Statistics: Theory and Methods; Wiley: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Bolt, D.M.; Kim, J.S.; Blanton, M.; Knuth, E. Applications of item response theory in mathematics education research. J. Res. Math. Educ. 2016, 15, 31–52. [Google Scholar]
- Robitzsch, A. Four-parameter guessing model and related item response models. Preprints 2022, 2022100430. [Google Scholar] [CrossRef]
Choice of | ||||||
---|---|---|---|---|---|---|
N | AIC | BIC | 0.05 | 0.1 | 0.15 | |
0.5 | 1000 | 6.4 | 0.4 | 12.5 | 9.1 | 5.3 |
2500 | 5.3 | 0.2 | 8.6 | 5.7 | 3.4 | |
5000 | 5.1 | 0.3 | 7.7 | 4.4 | 2.0 | |
1 | 1000 | 6.9 | 0.9 | 13.0 | 9.4 | 5.6 |
2500 | 6.7 | 2.5 | 9.8 | 6.4 | 4.4 | |
5000 | 6.3 | 3.9 | 7.9 | 4.9 | 4.0 |
Type I Error Rate for Non-DIF Effects | Power Rate for DIF Effects | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Choice of | Choice of | ||||||||||
N | AIC | BIC | 0.05 | 0.1 | 0.15 | AIC | BIC | 0.05 | 0.1 | 0.15 | |
0.5 | 1000 | 30.7 | 1.6 | 61.1 | 44.1 | 25.3 | 38.3 | 2.7 | 69.0 | 52.3 | 31.1 |
2500 | 21.3 | 0.5 | 37.1 | 23.2 | 13.3 | 46.8 | 2.7 | 67.4 | 48.6 | 31.2 | |
5000 | 17.5 | 0.4 | 29.6 | 14.8 | 5.9 | 58.5 | 5.4 | 74.4 | 52.0 | 27.1 | |
1 | 1000 | 25.6 | 1.7 | 58.5 | 38.4 | 19.7 | 70.0 | 16.5 | 90.1 | 80.5 | 61.6 |
2500 | 17.6 | 1.0 | 36.4 | 16.1 | 5.8 | 95.9 | 58.0 | 98.9 | 95.3 | 87.5 | |
5000 | 14.6 | 0.6 | 24.5 | 5.5 | 0.8 | 99.9 | 95.4 | 100.0 | 99.6 | 96.0 |
Bias | RMSE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Choice of | Choice of | |||||||||||
Par | N | AIC | BIC | 0.05 | 0.1 | 0.15 | AIC | BIC | 0.05 | 0.1 | 0.15 | |
0.5 | 1000 | 0.04 | 0.05 | 0.03 | 0.03 | 0.04 | 0.17 | 0.17 | 0.16 | 0.16 | 0.17 | |
2500 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | ||
5000 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | ||
1 | 1000 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.16 | 0.17 | 0.16 | 0.16 | 0.17 | |
2500 | 0.04 | 0.05 | 0.04 | 0.04 | 0.04 | 0.10 | 0.11 | 0.10 | 0.10 | 0.10 | ||
5000 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.08 | 0.07 | 0.08 | 0.08 | 0.07 | ||
0.5 | 1000 | 0.15 | 0.19 | 0.12 | 0.13 | 0.16 | 0.34 | 0.37 | 0.30 | 0.31 | 0.34 | |
2500 | 0.09 | 0.11 | 0.08 | 0.09 | 0.10 | 0.28 | 0.29 | 0.27 | 0.27 | 0.28 | ||
5000 | 0.05 | 0.07 | 0.05 | 0.05 | 0.07 | 0.22 | 0.23 | 0.21 | 0.21 | 0.22 | ||
1 | 1000 | 0.09 | 0.13 | 0.07 | 0.08 | 0.10 | 0.29 | 0.33 | 0.26 | 0.27 | 0.30 | |
2500 | 0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.17 | 0.18 | 0.16 | 0.17 | 0.17 | ||
5000 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | ||
0.5 | 1000 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.10 | 0.10 | 0.09 | 0.09 | 0.10 | |
2500 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | ||
5000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | ||
1 | 1000 | 0.01 | 0.02 | 0.00 | 0.00 | 0.01 | 0.09 | 0.10 | 0.09 | 0.09 | 0.09 | |
2500 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.06 | 0.05 | 0.05 | 0.05 | ||
5000 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | ||
0.5 | 1000 | 0.06 | 0.05 | 0.06 | 0.06 | 0.06 | 0.16 | 0.16 | 0.15 | 0.15 | 0.16 | |
2500 | 0.05 | 0.03 | 0.05 | 0.05 | 0.05 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | ||
5000 | 0.03 | 0.03 | 0.04 | 0.04 | 0.03 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | ||
1 | 1000 | 0.04 | 0.03 | 0.04 | 0.04 | 0.04 | 0.14 | 0.15 | 0.14 | 0.14 | 0.14 | |
2500 | 0.03 | 0.02 | 0.03 | 0.03 | 0.03 | 0.08 | 0.09 | 0.08 | 0.08 | 0.08 | ||
5000 | 0.03 | 0.02 | 0.03 | 0.03 | 0.02 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | ||
0.5 | 1000 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04 | 0.03 | 0.04 | 0.04 | 0.04 | |
2500 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04 | 0.03 | 0.04 | 0.04 | 0.04 | ||
5000 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04 | ||
1 | 1000 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 0.05 | 0.05 | 0.04 | |
2500 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | ||
5000 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | ||
(no DIF) | 0.5 | 1000 | 0.04 | 0.01 | 0.03 | 0.04 | 0.05 | 0.57 | 0.20 | 0.60 | 0.59 | 0.56 |
2500 | 0.03 | 0.00 | 0.02 | 0.03 | 0.03 | 0.36 | 0.10 | 0.38 | 0.37 | 0.34 | ||
5000 | 0.02 | 0.00 | 0.02 | 0.02 | 0.02 | 0.25 | 0.07 | 0.27 | 0.25 | 0.21 | ||
1 | 1000 | 0.05 | 0.01 | 0.04 | 0.04 | 0.05 | 0.46 | 0.19 | 0.50 | 0.48 | 0.45 | |
2500 | 0.01 | 0.00 | 0.01 | 0.02 | 0.01 | 0.23 | 0.09 | 0.26 | 0.23 | 0.18 | ||
5000 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.15 | 0.05 | 0.17 | 0.11 | 0.05 | ||
(DIF) | 0.5 | 1000 | 0.22 | 0.46 | 0.14 | 0.17 | 0.25 | 0.62 | 0.54 | 0.59 | 0.60 | 0.63 |
2500 | 0.15 | 0.47 | 0.09 | 0.14 | 0.22 | 0.47 | 0.51 | 0.42 | 0.47 | 0.51 | ||
5000 | 0.13 | 0.45 | 0.09 | 0.15 | 0.27 | 0.40 | 0.50 | 0.35 | 0.41 | 0.48 | ||
1 | 1000 | 0.26 | 0.77 | 0.19 | 0.22 | 0.31 | 0.67 | 0.95 | 0.56 | 0.61 | 0.72 | |
2500 | 0.08 | 0.37 | 0.07 | 0.09 | 0.12 | 0.37 | 0.68 | 0.34 | 0.37 | 0.44 | ||
5000 | 0.06 | 0.08 | 0.06 | 0.06 | 0.07 | 0.23 | 0.29 | 0.23 | 0.23 | 0.28 |
Item | True | Est | SE | True | Est | |
---|---|---|---|---|---|---|
1 | −1.4 | −1.31 | 0.16 | 0.0 | 0.00 | 0.74 |
2 | −0.9 | −0.85 | 0.15 | 0.0 | 0.00 | 0.81 |
3 | −1.6 | −1.59 | 0.16 | 0.0 | 0.00 | 0.82 |
4 | −1.1 | −1.02 | 0.17 | 0.0 | 0.00 | 0.77 |
5 | 0.3 | 0.32 | 0.20 | 0.0 | 0.00 | 0.59 |
6 | 0.4 | 0.44 | 0.17 | 0.0 | 0.00 | 0.77 |
7 | 0.4 | 0.50 | 0.15 | 0.0 | 0.00 | 0.86 |
8 | 0.9 | 0.95 | 0.15 | 0.0 | 0.00 | 0.83 |
9 | 0.5 | 0.56 | 0.21 | 0.0 | 0.00 | 0.63 |
10 | 0.5 | 0.58 | 0.18 | 0.0 | 0.00 | 0.81 |
11 | 0.9 | 0.94 | 0.15 | 0.0 | 0.00 | 0.84 |
12 | 0.4 | 0.56 | 0.29 | 0.0 | −0.34 | 0.18 |
13 | −1.6 | −1.68 | 0.17 | 0.0 | 0.25 | 0.65 |
14 | −0.6 | −0.75 | 0.27 | 0.0 | 0.49 | 0.20 |
15 | −0.6 | −0.54 | 0.17 | 0.0 | 0.00 | 0.85 |
16 | 0.9 | 1.01 | 0.20 | 0.0 | 0.00 | 0.60 |
17 | 0.4 | 0.53 | 0.20 | 0.0 | −0.27 | 0.72 |
18 | 0.9 | 1.04 | 0.22 | 0.0 | −0.24 | 0.36 |
19 | 0.5 | 0.59 | 0.16 | 0.1 | 0.00 | 0.65 |
20 | −0.1 | 0.03 | 0.15 | 0.3 | 0.00 | 0.87 |
21 | −1.9 | −1.75 | 0.18 | 0.5 | 0.00 | 0.85 |
22 | 0.3 | 0.22 | 0.18 | 0.4 | 0.43 | 0.67 |
23 | −0.9 | −0.80 | 0.25 | 0.8 | 0.40 | 0.35 |
24 | 0.0 | 0.01 | 0.22 | 0.7 | 0.29 | 0.23 |
25 | −1.2 | −1.42 | 0.27 | 0.8 | 1.03 | 0.23 |
26 | −0.2 | −0.22 | 0.23 | 0.6 | 0.57 | 0.31 |
True | Est Fused Reg | Est Reg | |||||||
---|---|---|---|---|---|---|---|---|---|
Item | |||||||||
1 | −0.7 | 1.4 | −0.7 | −0.74 | 1.47 | −0.74 | −0.72 | 1.44 | −0.72 |
2 | −0.7 | 1.4 | −0.7 | −0.70 | 1.44 | −0.70 | −0.68 | 1.41 | −0.68 |
3 | −2.5 | 1.1 | −2.5 | −2.62 | 1.13 | −2.19 | −2.61 | 1.10 | −2.18 |
4 | −1.3 | 1.3 | −1.3 | −1.29 | 1.33 | −1.29 | −1.27 | 1.30 | −1.27 |
5 | −1.3 | 1.0 | −1.3 | −1.32 | 1.07 | −1.32 | −1.30 | 1.05 | −1.30 |
6 | 1.1 | 1.1 | −0.6 | 1.17 | 1.17 | −0.57 | 1.17 | 1.17 | −0.56 |
7 | 1.0 | −1.1 | −0.6 | 1.03 | −1.21 | −0.64 | 1.04 | −1.24 | −0.62 |
8 | 0.0 | −1.8 | −1.2 | −0.05 | −1.73 | −1.34 | −0.05 | −1.76 | −1.31 |
9 | 0.4 | −1.2 | −1.2 | 0.42 | −1.16 | −1.16 | 0.42 | −1.16 | −1.16 |
10 | 1.5 | 0.3 | 0.3 | 1.45 | 0.30 | 0.30 | 1.45 | 0.29 | 0.29 |
11 | 2.3 | 3.7 | 3.7 | 2.34 | 3.79 | 3.79 | 2.34 | 3.81 | 3.81 |
12 | −0.9 | −1.5 | 1.0 | −0.84 | −1.41 | 1.05 | −0.83 | −1.43 | 1.08 |
13 | −0.9 | −1.5 | 1.0 | −0.92 | −1.42 | 1.15 | −0.91 | −1.44 | 1.17 |
14 | −1.2 | −1.2 | −1.2 | −1.16 | −1.16 | −1.16 | −1.15 | −1.15 | −1.15 |
15 | −1.8 | 0.0 | 3.3 | −1.70 | 0.19 | 2.89 | −1.69 | 0.16 | 3.06 |
16 | 0.0 | 0.0 | 3.3 | 0.07 | 0.07 | 3.21 | 0.07 | 0.07 | 3.24 |
17 | 1.0 | 1.0 | 3.4 | 1.00 | 1.00 | 3.20 | 0.99 | 0.99 | 3.22 |
18 | 0.0 | −1.2 | −1.2 | 0.02 | −1.26 | −1.26 | 0.02 | −1.26 | −1.26 |
19 | 1.4 | −0.4 | −0.4 | 1.49 | −0.48 | −0.48 | 1.49 | −0.63 | −0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robitzsch, A. Regularized Mixture Rasch Model. Information 2022, 13, 534. https://doi.org/10.3390/info13110534
Robitzsch A. Regularized Mixture Rasch Model. Information. 2022; 13(11):534. https://doi.org/10.3390/info13110534
Chicago/Turabian StyleRobitzsch, Alexander. 2022. "Regularized Mixture Rasch Model" Information 13, no. 11: 534. https://doi.org/10.3390/info13110534
APA StyleRobitzsch, A. (2022). Regularized Mixture Rasch Model. Information, 13(11), 534. https://doi.org/10.3390/info13110534