Recognition of Biological Tissue Denaturation Based on Improved Multiscale Permutation Entropy and GK Fuzzy Clustering
Abstract
:1. Introduction
2. Theory
2.1. MPE
2.2. IMPE
2.3. GK Fuzzy Clustering
- (1)
- Initializing the number of clustering c, fuzzy index θ, and the membership matrix U to satisfy Formula (12).
- (2)
- Updating the cluster center vi by Formula (13).
- (3)
- Calculating the covariance matrix of the cluster center Fi.
3. Results
3.1. Simulation with White Gaussian Noise (WGN)
3.2. Analysis of Ultrasonic Scattered Echo Signals
3.3. Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hill, C.R.; Haar, G.T. Review article: High intensity focused ultrasound—Potential for cancer treatment. Br. J. Radiol. 1995, 68, 1296–1303. [Google Scholar] [CrossRef]
- Kennedy, J.E. High intensity focused ultrasound: Surgery of the future? Br. J. Radiol. 2003, 76, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.R.; Khokhlova, V.A.; Sapozhnikov, O.; Kargl, S.G.; Crum, L.A. Physical mechanisms of the therapeutic effect of ultrasound. Acoust. Phys. 2003, 49, 369–388. [Google Scholar] [CrossRef]
- Rove, K.O.; Sullivan, K.F.; Crawford, E.D. High-intensity Focused Ultrasound: Ready for Primetime. Urol. Clin. N. Am. 2010, 37, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Cranston, D. A review of high intensity focused ultrasound in relation to the treatment of renal tumours and other malignancies. Ultrason. Sonochem. 2015, 27, 654–658. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Bae, D.-S.; Park, M.J.; Viitala, A.; Keserci, B.; Rhim, H.; Lim, H.K. Techniques to expand patient selection for MRI-guided high-intensity focused ultrasound ablation of uterine fibroids. AJR. Am. J. Roentgenol. 2014, 202, 443–451. [Google Scholar] [CrossRef]
- Filipowska, J.; Łoziński, T. Magnetic Resonance-Guided High-Intensity Focused Ultrasound (MR-HIFU) in Treatment of Symptomatic Uterine Myomas. Pol. J. Radiol. 2014, 79, 439–443. [Google Scholar] [PubMed] [Green Version]
- Wood, B.J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; et al. CT and ultrasound guided stereotactic high intensity focused ultrasound (HIFU). AIP Conf. Proc. 2006, 829, 122–126. [Google Scholar]
- Weiss, N.; Sosna, J.; Goldberg, S.N.; Azhari, H. Non-invasive temperature monitoring and hyperthermic injury onset detection using X-ray CT during HIFU thermal treatment in ex vivo fatty tissue. Int. J. Hyperther. 2014, 30, 119–125. [Google Scholar] [CrossRef]
- Ballard, J.R.; Casper, A.J.; Ebbini, E.S. Monitoring and guidance of HIFU beams with dual-mode ultrasound arrays. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 137–140. [Google Scholar]
- Wen, Q.; Wan, S.; Liu, Z.; Xu, S.; Wang, H.; Yang, B. B-ultrasound Image Registration of HIFU Monitoring Based on Ultrasonic Speckle. Sci. Technol. Rev. 2010, 28, 59–63. [Google Scholar]
- Zhang, S.; Yang, W.; Yang, R.; Ye, B.; Chen, L.; Ma, W.; Chen, Y. Noninvasive temperature monitoring in a wide range based on textures of ultrasound images. In International Workshop on Medical Imaging and Virtual Reality; Springer: Berlin/Heidelberg, Germany, 2006; pp. 100–107. [Google Scholar]
- Poušek, L.; Jelínek, M.; Storkova, B.; Novak, P. Noninvasive temperature monitoring using ultrasound tissue characterization method. In Proceedings of the 28th International Conference on Information Technology Interfaces, Cavtat, Croatia, 19–22 June 2006; pp. 219–224. [Google Scholar]
- Parker, K.J. Ultrasonic attenuation and absorption in liver tissue. Ultrasound Med. Biol. 1983, 9, 363–369. [Google Scholar] [CrossRef]
- Damianou, C.A.; Sanghvi, N.T.; Fry, F.J.; Maass-Moreno, R. Dependence of ultrasonic attenuation and absorption in dog soft tissues on temperature and thermal dose. J. Acoust. Soc. Am. 1997, 102, 628–634. [Google Scholar] [CrossRef]
- Worthington, A.E.; Trachtenberg, J.; Sherar, M.D. Ultrasound properties of human prostate tissue during heating. Ultrasound Med. Biol. 2002, 28, 1311–1318. [Google Scholar] [CrossRef]
- Garra, B.S. Imaging and estimation of tissue elasticity by ultrasound. Ultrasound Q. 2007, 23, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Pichardo, S.; Sin, V.W.; Hynynen, K. Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls. Phys. Med. Biol. 2010, 56, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furness, G.; Reilly, M.P.; Kuchi, S. An evaluation of ultrasound imaging for identification of lumbar intervertebral level. Anaesthesia 2015, 57, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Shishitani, T.; Yoshizawa, S.; Umemura, S. Change in acoustic impedance and sound speed of HIFU-exposed chicken breast muscle. In Proceedings of the 2010 IEEE International Ultrasonics Symposium, San Diego, CA, USA, 11–14 October 2010; pp. 1384–1387. [Google Scholar]
- Mobasheri, S.; Behnam, H.; Rangraz, P.; Tavakkoli, J. Radio frequency ultrasound time series signal analysis to evaluate high-intensity focused ultrasound lesion formation status in tissue. J. Med. Signals Sens. 2016, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Tsui, P.H.; Wan, Y.L. Effects of fatty infiltration of the liver on the Shannon entropy of ultrasound backscattered signals. Entropy 2016, 18, 341. [Google Scholar] [CrossRef] [Green Version]
- Tsui, P.H. Ultrasound Detection of Scatterer Concentration by Weighted Entropy. Entropy 2015, 17, 6598–6616. [Google Scholar] [CrossRef] [Green Version]
- Behnam, H.; Monfared, M.M.; Rangraz, P.; Tavakkoli, J. High-intensity focused ultrasound thermal lesion detection using entropy imaging of ultrasound radio frequency signal time series. J. Med. Ultrasound 2018, 26, 24. [Google Scholar] [CrossRef] [PubMed]
- Montirosso, R.; Riccardi, B.; Molteni, E.; Borgatti, R.; Reni, G. Infant’s emotional variability associated to interactive stressful situation: A novel analysis approach with Sample Entropy and Lempel-Ziv Complexity. Infant Behav. Dev. 2010, 33, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Raghavendra, U.; Fujita, H.; Hagiwara, Y.; Koh, J.E.; Hong, T.J.; Sudarshan, V.K.; Vijayananthan, A.; Yeong, C.H.; Gudigar, A.; et al. Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Comput. Biol. Med. 2016, 79, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef]
- Yan, S.-Q.; Zhang, H.; Liu, B.; Tang, H.; Qian, S.-Y. Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment. Chin. Phys. B 2021, 30, 028704. [Google Scholar] [CrossRef]
- Liu, B.; Wang, R.; Peng, Z.; Qin, L. Identification of denatured biological tissues based on compressed sensing and improved multiscale dispersion entropy during HIFU treatment. Entropy 2020, 22, 944. [Google Scholar] [CrossRef]
- Gao, Y.; Villecco, F.; Li, M.; Song, W. Multi-scale permutation entropy based on improved LMD and HMM for rolling bearing diagnosis. Entropy 2017, 19, 176. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, Y.; Chen, X.; Yu, J. A novel feature extraction method for ship-radiated noise based on variational mode decomposition and multi-scale permutation entropy. Entropy 2017, 19, 342. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Hu, W.P.; Zou, X.; Ding, Y.J.; Qian, S.Y. Recognition of denatured biological tissue based on variational mode decomposition and multi-scale permutation entropy. Acta Phys. Sin. 2019, 68, 028702. [Google Scholar] [CrossRef]
- Liu, B.; Tan, W.; Zhang, X.; Peng, Z.; Cao, J. Recognition study of denatured biological tissues based on multi-scale rescaled range permutation entropy. Math. Biosci. Eng. 2022, 19, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Fadlallah, B.; Chen, B.; Keil, A.; Príncipe, J. Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Phys. Rev. E 2013, 87, 022911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zang, W.; Wang, Z.; Jiang, D.; Liu, X.; Jiang, Z. Classification of MRI brain images using DNA genetic algorithms optimized Tsallis entropy and support vector machine. Entropy 2018, 20, 964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilakiyaselvan, N.; Khan, A.N.; Shahina, A. Deep learning approach to detect seizure using reconstructed phase space images. J. Biomed. Res. 2020, 34, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Grassi, K.; Poisson-Caillault, É.; Bigand, A.; Lefebvre, A. Comparative Study of Clustering Approaches Applied to Spatial or Temporal Pattern Discovery. J. Mar. Sci. Eng. 2020, 8, 713. [Google Scholar] [CrossRef]
- Seip, R.; Tavakkoli, J.; Carlson, R.; Wunderlich, A.; Sanghvi, N.; Dines, K.; Gardner, T. High-intensity focused ultrasound (HIFU) multiple lesion imaging: Comparison of detection algorithms for real-time treatment control. In Proceedings of the IEEE Ultrasonics Symposium, Munich, German, 8–11 October 2002; Volume 2, pp. 1427–1430. [Google Scholar]
- Ge, H.; Liu, X. Fault Diagnosis of Rolling Bearings Based on ALIFD Fuzzy Entropy and GK Clustering. Fail. Anal. Prev. 2019, 14, 71–78. [Google Scholar]
Entropy | Samplings | |||
---|---|---|---|---|
500 | 1000 | 3000 | 5000 | |
MPE | 0.0917 | 0.0587 | 0.0143 | 0.0119 |
IMPE | 0.0215 | 0.0103 | 0.0049 | 0.0020 |
Recognition Methods | Non-Denatured Tissue | Denatured Tissue | Recognition Rate (%) |
---|---|---|---|
MPE-SVM | 81/100 | 96/100 | 88.5 |
IMPE-SVM | 86/100 | 98/100 | 92.0 |
MPE-GK | 85/100 | 97/100 | 91.0 |
IMPE-GK | 92/100 | 99/100 | 95.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Z.; Zhang, X.; Cao, J.; Liu, B. Recognition of Biological Tissue Denaturation Based on Improved Multiscale Permutation Entropy and GK Fuzzy Clustering. Information 2022, 13, 140. https://doi.org/10.3390/info13030140
Peng Z, Zhang X, Cao J, Liu B. Recognition of Biological Tissue Denaturation Based on Improved Multiscale Permutation Entropy and GK Fuzzy Clustering. Information. 2022; 13(3):140. https://doi.org/10.3390/info13030140
Chicago/Turabian StylePeng, Ziqi, Xian Zhang, Jing Cao, and Bei Liu. 2022. "Recognition of Biological Tissue Denaturation Based on Improved Multiscale Permutation Entropy and GK Fuzzy Clustering" Information 13, no. 3: 140. https://doi.org/10.3390/info13030140
APA StylePeng, Z., Zhang, X., Cao, J., & Liu, B. (2022). Recognition of Biological Tissue Denaturation Based on Improved Multiscale Permutation Entropy and GK Fuzzy Clustering. Information, 13(3), 140. https://doi.org/10.3390/info13030140