MEC Computation Offloading-Based Learning Strategy in Ultra-Dense Networks
Abstract
:1. Introduction
- (1)
- A MEC architecture-based UDN is designed, and a task weighted cost model based on execution delay and energy consumption is established. The task offloading and resource allocation are combined into an NP-hard optimization problem.
- (2)
- An action classification (AC) algorithm is developed to select the most suitable edge server, which can reduce the possible values of offloading decisions and improve learning efficiency.
- (3)
- A deep Q network-based AC algorithm (DQN-AC) is proposed to solve the task offloading and resource allocation problems. First, according to the execution delay and computing resource constraints, the AC algorithm is adopted to select effective actions. Then, the DQN algorithm is used to solve the optimization problem, and the optimal task offloading and resource allocation scheme is obtained through finite iterations.
2. Related Work
3. Problem Formulation
3.1. System Model
3.2. Communication Model
3.3. Computation Model
3.3.1. The Local Computing Model
3.3.2. The Local Computing Model
3.4. Problem Formulation
4. Proposed Method
4.1. The Definition of State, Action and Reward
4.2. Action Classification Algorithm
Algorithm 1 AC algorithm |
input |
output bool //reasonable judgment of Boolean value by action |
initialization bool = False |
if // UM chooses to perform calculations locally |
if // whether local computing latency constraints are met |
bool = True // action allows execution |
else: |
if //offloading computation |
if // select the j-th MEC for offloading computation |
if |
bool = False |
elif and : |
bool = False |
else |
//select new MEC small base station |
else |
if and : |
bool = True |
end if |
4.3. DQN-AC Algorithm
Algorithm 2 DQN-AC algorithm |
initialize replay memory to capacity |
initialize |
for do |
initialize sequence and preprocessed |
for do |
if then |
; |
else |
end if |
if then //filtering actions using AF algorithm |
; |
; |
store transition in |
if then |
sample random minibatch of transitions from |
set |
perform a gradient descent step on |
update |
end if |
update the network weight every C steps: |
end for |
end for |
4.4. The Performance Evaluation of DQN-AC
5. Experimental Results and Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siriwardhana, Y.; Porambage, P.; Liyanage, M.; Ylianttila, M. A Survey on Mobile Augmented Reality with 5G Mobile Edge Computing: Architectures, Applications and Technical Aspects. IEEE Commun. Surv. Tutor. 2021, 23, 1160–1192. [Google Scholar] [CrossRef]
- Shakarami, A.; Ghobaei-Arani, M.; Shahidinejad, A. A survey on the computation offloading approaches in mobile edge computing: A machine learning-based perspective. Comput. Netw. 2020, 182, 107496. [Google Scholar] [CrossRef]
- Kherani, A.A.; Shukla, G.; Sanadhya, S.; Vasudev, N.; Ahmed, M.; Patel, A.S.; Mehrotra, R.; Lall, B.; Saran, H.; Vutukuru, M.; et al. Development of MEC system for indigenous 5G Test Bed. In Proceedings of the 2021 International Conference on Communication Systems & NETworks (COMSNETS), Bangalore, India, 5–9 January 2021; pp. 131–133. [Google Scholar]
- Wang, X.; Ning, Z.; Guo, L.; Guo, S.; Gao, X.; Wang, G. Online Learning for Distributed Computation Offloading in Wireless Powered Mobile Edge Computing Networks. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 1841–1855. [Google Scholar] [CrossRef]
- Yue, S.; Ren, J.; Qiao, N.; Zhang, Y.; Jiang, H.; Zhang, Y.; Yang, Y. TODG: Distributed Task Offloading With Delay Guarantees for Edge Computing. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 1650–1665. [Google Scholar] [CrossRef]
- Cui, M.; Fei, Y.; Liu, Y. A Survey on Secure Deployment of Mobile Services in Edge Computing. Secur. Commun. Netw. 2021, 2021, 8846239. [Google Scholar] [CrossRef]
- Shakarami, A.; Ghobaei-Arani, M.; Masdari, M.; Hosseinzadeh, M. A Survey on the Computation Offloading Approaches in Mobile Edge/Cloud Computing Environment: A Stochastic-based Perspective. Grid. Comput. 2020, 18, 639–671. [Google Scholar] [CrossRef]
- Wang, S.; Xu, J.; Zhang, N.; Liu, Y. A Survey on Service Migration in Mobile Edge Computing. IEEE Access. 2018, 6, 23511–23528. [Google Scholar] [CrossRef]
- Kamel, M.; Hamouda, W.; Youssef, A. Ultra-Dense Networks: A Survey. IEEE Commun. Surv. Tutor. 2017, 18, 2522–2545. [Google Scholar] [CrossRef]
- Teng, Y.; Liu, M.; Yu, F.R.; Leung, V.C.; Song, M.; Zhang, Y. Resource Allocation for Ultra-Dense Networks: A Survey, Some Research Issues and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 2134–2168. [Google Scholar] [CrossRef]
- Adedoyin, M.A.; Falowo, O.E. Combination of Ultra-Dense Networks and Other 5G Enabling Technologies: A Survey. IEEE Access. 2020, 8, 22893–22932. [Google Scholar] [CrossRef]
- Guo, H.; Lv, J.; Liu, J. Smart Resource Configuration and Task Offloading with Ultra-Dense Edge Computing. In Proceedings of the 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain, 21–23 October 2019. [Google Scholar]
- Liu, J.; Mao, Y.; Zhang, J.; Letaief, K.B. Delay-Optimal Computation Task Scheduling for Mobile-Edge Computing Systems. In Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10 July 2016; pp. 1451–1455. [Google Scholar]
- Mao, Y.; Zhang, J.; Song, S.H.; Letaief, K.B. Stochastic Joint Radio and Computational Resource Management for Multi-User Mobile-Edge Computing Systems. IEEE Trans. Wirel. Commun. 2017, 16, 5994–6009. [Google Scholar] [CrossRef] [Green Version]
- Guo, K.; Gao, R.; Xia, W.; Quek, T.Q. Online Learning based Computation Offloading in MEC Systems with Communication and Computation. IEEE Trans. Commun. 2020, 69, 1147–1162. [Google Scholar] [CrossRef]
- Huang, L.; Bi, S.; Zhang, Y. Deep Reinforcement Learning for Online Offloading in Wireless Powered Mobile-Edge Computing Networks. IEEE Trans. Mobile Comput. 2020, 19, 2581–2593. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Xue, G.; Zhang, X. Application Provisioning in FOG Computing-enabled Internet-of-Things: A Network Perspective. In Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018; pp. 783–791. [Google Scholar]
- Ning, Z.; Dong, P.; Kong, X.; Xia, F. A Cooperative Partial Computation Offloading Scheme for Mobile Edge Computing Enabled Internet of Things. IEEE Internet Things 2019, 6, 4804–4814. [Google Scholar] [CrossRef]
- Cheng, B.; Zhang, Z.; Liu, D. Dynamic Computation Offloading Based on Deep Reinforcement Learning. In Proceedings of the 2019 12th EAI International Conference on Mobile Multimedia Communications, Weihai, China, 29–30 June 2019. [Google Scholar]
- Xu, S.; Liao, B.; Yang, C.; Guo, S.; Hu, B.; Zhao, J.; Jin, L. Deep reinforcement learning assisted edge-terminal collaborative offloading algorithm of blockchain computing tasks for energy Internet. Int. J. Elec. Power 2021, 131, 107022. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.; Wang, W.; Zhang, Y. Energy-Efficient Collaborative Task Offloading in D2D-assisted Mobile Edge Computing Networks. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019. [Google Scholar]
- Hu, D.; Huang, G.; Tang, D.; Zhao, S.; Zheng, H. Joint Task Offloading and Computation in Cooperative Multicarrier Relaying Based Mobile Edge Computing Systems. IEEE Internet Things 2021, 8, 11487–11502. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Jing, K.; Liu, K.; He, X. Research on offloading Strategy based on NOMA-MEC in Internet of Vehicles. Electron. Inf. Technol. 2021, 43, 1072–1079. [Google Scholar]
- Zhou, H.; Jiang, K.; Liu, X.; Li, X.; Leung, V.C. Deep Reinforcement learning for energy-efficient computation offloading in mobile edge computing. IEEE Internet Things 2021, 9, 1517–1530. [Google Scholar] [CrossRef]
- Ale, L.; Zhang, N.; Fang, X.; Chen, X.; Wu, S.; Li, L. Delay-aware and Energy-Efficient Computation Offloading in Mobile Edge Computing Using Deep Reinforcement Learning. IEEE Trans. Cogn. Commun. 2021, 7, 881–892. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, J.; Letaief, K.B. Joint Task Offloading Scheduling and Transmit Power Allocation for Mobile-Edge Computing Systems. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017. [Google Scholar]
- Zhang, G.; Zhang, S.; Zhang, W.; Shen, Z.; Wang, L. Joint Service Caching, Computation Offloading and Resource Allocation in Mobile Edge Computing Systems. IEEE Trans. Wirel. Commun. 2021, 20, 5288–5300. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, Y.; Cheng, G.; Lan, X.; Chen, Q. Secure Offloading Design in Multi-user Mobile-Edge Computing Systems. In Proceedings of the 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS), Chengdu, China, 23–26 April 2021; pp. 695–703. [Google Scholar]
- Lan, X.; Cai, L.; Chen, Q. Execution Latency and Energy Consumption Tradeoff in Mobile-Edge Computing Systems. In Proceedings of the 2019 IEEE/CIC International Conference on Communications in China (ICCC), Changchun, China, 11–13 August 2019; pp. 123–128. [Google Scholar]
- Zhao, R.; Wang, X.; Xia, J.; Fan, L. Deep Reinforcement Learning Based Mobile Edge Computing for Intelligent Internet of Things. Phys. Commun.-Amst. 2020, 43, 101184. [Google Scholar] [CrossRef]
- Elgendy, I.A.; Zhang, W.Z.; He, H.; Gupta, B.B.; El-Latif, A.; Ahmed, A. Joint computation offloading and task caching for multi-user and multi-task MEC systems: Reinforcement learning-based algorithms. Wire. Netwo. 2021, 27, 2023–2038. [Google Scholar] [CrossRef]
- Ji, L.; Hui, G.; Lv, T.; Lu, Y. Deep reinforcement learning based computation offloading and resource allocation for MEC. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018. [Google Scholar]
- Nath, S.; Li, Y.; Wu, J.; Fan, P. Multi-user Multi-channel Computation Offloading and Resource Allocation for Mobile Edge Computing. In Proceedings of the 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020. [Google Scholar]
- Wen, Y.; Zhang, W.; Luo, H. Energy-optimal mobile application execution: Taming resource-poor mobile devices with cloud clones. In Proceedings of the 2012 Proceedings IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 2716–2720. [Google Scholar]
- Wang, C.; Yu, F.R.; Liang, C.; Chen, Q.; Tang, L. Joint Computation Offloading and Interference Management in Wireless Cellular Networks with Mobile Edge Computing. IEEE Trans. Veh. Technol. 2017, 66, 7432–7445. [Google Scholar] [CrossRef]
Ref. | Constraints | Infrastructure | Method | |||
---|---|---|---|---|---|---|
Time Delay | Energy Consumption | Multiple Users | Multiple Edge Servers | Cloud Server | ||
[15] | + | + | + | + | − | lyapunov optimization |
[16] | + | + | + | − | − | deep Reinforcement learning |
[18] | + | − | + | + | + | iterative heuristic |
[21] | + | + | + | − | − | iterative algorithm |
[22] | + | + | − | − | − | convex approximation |
[24] | − | + | + | − | − | double deep Q network |
[25] | − | + | + | + | + | deep Reinforcement Learning |
[27] | + | + | + | − | + | semidefinite relaxation approach |
[29] | + | + | + | − | − | exact line search algorithm |
[30] | + | + | + | + | − | deep reinforcement learning |
this paper | + | + | + | + | − | deep reinforcement learning |
Abbreviation | Description |
---|---|
MEC | Mobile Edge Computing |
UDN | Ultra-Dense Network |
MUD | Mobile User Device |
DRL | Deep Reinforcement Learning |
DQN | Deep Q Network |
AC | Action Classification |
DQN-AC | Deep Q Network with Action Classification |
FLC | Full Local Computation |
FOC | Full Offloading Computation |
Symbol | Definition |
---|---|
the set of all MUDs | |
the set of all MEC servers | |
whether MUD chooses MEC server for computation offloading | |
the data transmission rate of MUD accessing to MEC server | |
the wireless channel bandwidth | |
the transmission power | |
the channel gain | |
the antenna gain | |
the carrier frequency | |
the distance between MUD and MEC server | |
the path loss exponent | |
the white Gaussian noise | |
the intensive task of MUD | |
the data size of task | |
the total number of CPU cycles required for completing the task | |
the maximum delay for computing task | |
local or edge execution delay | |
local or edge energy consumption | |
the weighted cost of local computing or edge computing | |
the local computing power of MUD | |
energy consumption density | |
the weight parameters of execution delay and energy consumption |
Parameter Description | Parameter Value Domain |
---|---|
wireless channel bandwidth | 10 MHz |
thermal noise of wireless environment system | −100 dBm |
the path fading factor | 3 |
the antenna gain | 4 |
the carrier frequency | 915 MHz |
UMD transmission power | 100 mw |
UMD idle power | 10 mw |
the size of input data | 300 Kb–500 Kb |
MEC computing capability | 20 GHz/s |
UMD computing ability | 1 GHz/s |
number of computing resources | 900 hz–1100 hz |
maximum tolerance delay | 3 × 10−3 s |
weight | 0.5, 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duo, C.; Dong, P.; Gao, Q.; Li, B.; Li, Y. MEC Computation Offloading-Based Learning Strategy in Ultra-Dense Networks. Information 2022, 13, 271. https://doi.org/10.3390/info13060271
Duo C, Dong P, Gao Q, Li B, Li Y. MEC Computation Offloading-Based Learning Strategy in Ultra-Dense Networks. Information. 2022; 13(6):271. https://doi.org/10.3390/info13060271
Chicago/Turabian StyleDuo, Chunhong, Peng Dong, Qize Gao, Baogang Li, and Yongqian Li. 2022. "MEC Computation Offloading-Based Learning Strategy in Ultra-Dense Networks" Information 13, no. 6: 271. https://doi.org/10.3390/info13060271
APA StyleDuo, C., Dong, P., Gao, Q., Li, B., & Li, Y. (2022). MEC Computation Offloading-Based Learning Strategy in Ultra-Dense Networks. Information, 13(6), 271. https://doi.org/10.3390/info13060271