Multiple Information-Aware Recurrent Reasoning Network for Joint Dialogue Act Recognition and Sentiment Classification
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Graph Construction
3.1.1. Speaker-Aware Temporal Graph
3.1.2. Dual-Task Reasoning Temporal Graph
3.2. Dialogue Understanding
3.2.1. Context-Level Feature Extraction
3.2.2. Fine-Grained-Level Feature Extraction
3.2.3. Speaker-Aware Temporal Dependencies Heterogeneous Graph Transformer
3.3. Initial Estimation
3.4. Recurrent Dual-Task Reasoning
3.4.1. Prediction Labels
3.4.2. Dual-Task Reasoning Temporal Dependencies Heterogeneous Graph Transformer
3.4.3. Output Layer
3.5. Joint Training
4. Experiments
4.1. Datasets and Settings
4.2. Main Results
4.3. Ablation Study
4.4. Error Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghosal, D.; Majumder, N.; Mihalcea, R.; Poria, S. Exploring the role of context in utterance-level emotion, act and intent classification in conversations: An empirical study. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021; Association for Computational Linguistics: Morristown, NJ, USA, 2021; pp. 1435–1449. [Google Scholar]
- Enayet, A.; Sukthankar, G. Improving the generalizability of collaborative dialogue analysis with multi feature embeddings. arXiv 2023, arXiv:2302.04716. [Google Scholar]
- Raheja, V.; Tetreault, J. Dialogue act classification with context-aware self-attention. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 3–5 June 2019; pp. 3727–3733. [Google Scholar]
- Kim, M.; Kim, H. Integrated neural network model for identifying speech acts, predictors, and sentiments of dialogue utterances. Pattern Recognit. Lett. 2018, 101, 1–5. [Google Scholar] [CrossRef]
- Bibi, M.; Abbasi, W.A.; Aziz, W.; Khalil, S.; Uddin, M.; Iwendi, C.; Gadekallu, T.R. A novel unsupervised ensemble framework using concept based linguistic methods and machine learning for Twitter sentiment analysis. Pattern Recognit. Lett. 2022, 158, 80–86. [Google Scholar] [CrossRef]
- Cerisara, C.; Jafaritazehjani, S.; Oluokun, A.; Le, H. Multi-task dialog act and sentiment recognition on mastodon. In Proceedings of the 27th International Conference on Computational Linguistics, COLING 2018, Association for Computational Linguistics, Santa Fe, NM, USA, 20–26 August 2018; pp. 745–754. [Google Scholar]
- Qin, L.; Li, Z.; Che, W.; Ni, M.; Liu, T. Co-gat: A co-interactive graph attention network for joint dialog act recognition and sentiment classification. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 18 May 2021; pp. 13709–13717. [Google Scholar]
- Xing, B.; Tsang, I. Darer: Dual-task temporal relational recurrent reasoning network for joint dialog sentiment classification and act recognition. In Findings of the Association for Computational Linguistics: ACL 2022; Association for Computational Linguistics: Morristown, NJ, USA, 2022; pp. 3611–3621. [Google Scholar]
- Ko, Y. New feature weighting approaches for speech-act classification. Pattern Recognit. Lett. 2015, 51, 107–111. [Google Scholar] [CrossRef]
- Kang, S.; Ko, Y.; Seo, J. Hierarchicalspeech-actclassificationfordiscourse analysis. Pattern Recognit. Lett. 2013, 34, 1119–1124. [Google Scholar] [CrossRef]
- Liu, Y.; Han, K.; Tan, Z.; Lei, Y. Using context information for dialog act classification in dnn framework. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017; pp. 2170–2178. [Google Scholar]
- Kumar, H.; Agarwal, A.; Dasgupta, R.; Joshi, S. Dialogue act sequence labeling using hierarchical encoder with crf. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 3440–3447. [Google Scholar]
- Li, R.; Lin, C.; Collinson, X.; Li, M.; Chen, G. A dual-attention hierarchical recurrent neural network for dialogue act classification. In Proceedings of the 23rd Conference on Computational Natural Language Learning, Hong Kong, China, 3–4 November 2019; pp. 383–392. [Google Scholar]
- Sunitha, D.; Patra, R.K.; Babu, N.V.; Suresh, A.; Gupta, S.C. Twitter sentiment analysis using ensemble based deep learning model towards COVID-19 in india and european countries. Pattern Recognit. Lett. 2022, 158, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Majumder, N.; Poria, S.; Hazarika, D.; Mihalcea, R.; Gelbukh, A.; Cambria, E. Dialoguernn: An attentive rnn for emotion detection in conversations. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 6818–6825. [Google Scholar]
- Ma, H.; Wang, J.; Lin, H.; Pan, X.; Zhang, Y.; Yang, Z. A multi-view network for real-time emotion recognition in conversations. Knowl.-Based Syst. 2022, 236, 107751. [Google Scholar] [CrossRef]
- Li, J.; Lin, Z.; Fu, P.; Wang, W. Past, present, and future: Conversational emotion recognition through structural modeling of psychological knowledge. In Findings of the Association for Computational Linguistics: EMNLP 2021; Association for Computational Linguistics: Morristown, NJ, USA, 2021; pp. 1204–1214. [Google Scholar]
- Qin, L.; Che, W.; Li, Y.; Liu, T. Dcr-net: A deep co-interactive relation network for joint dialog act recognition and sentiment classification. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 8665–8672. [Google Scholar]
- Lin, H.; Liu, J.; Zheng, Z.; Hu, R.; Luo, Y. Multi-task network for joint dialog act recognition and sentiment classification. Comput. Eng. Appl. 2023, 59, 104–111. [Google Scholar]
- Li, J.; Fei, H.; Ji, D. Modeling local contexts for joint dialogue act recognition and sentiment classification with bi-channel dynamic convolutions. In Proceedings of the 28th International Conference on Computational Linguistics, online, 8–13 December 2020; pp. 616–626. [Google Scholar]
- Xu, Y.; Yao, E.; Liu, C.; Liu, Q.; Xu, M. A novel ensemble model with two-stage learning for joint dialog act recognition and sentiment classification. Pattern Recognit. Lett. 2023, 165, 77–83. [Google Scholar] [CrossRef]
- Hu, Z.; Dong, Y.; Wang, K.; Sun, Y. Heterogeneous graph transformer. In Proceedings of the Web Conference, New York, NY, USA, 25–29 April 2022; pp. 2704–2710. [Google Scholar]
- Roy, S.; Min, K.; Tripathi, S.; Guha, T.; Majumdar, S. Learning Spatial-Temporal Graphs for Active Speaker Detection. arXiv 2021, arXiv:2112.01479. [Google Scholar]
- Li, J.; Liu, M.; Wang, Y.; Zhang, D.; Qin, B. A speaker-aware multiparty dialogue discourse parser with heterogeneous graph neural network. Cogn. Syst. Res. 2023, 79, 15–23. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, H.; Deng, J.; Sun, X. Hyperbolic linear units for deep convolutional neural networks. In Proceedings of the 2016 International Joint Conference on Neural Networks, Vancouver, BC, Canada, 24–29 July 2016; pp. 353–359. [Google Scholar]
- Li, Y.; Su, H.; Shen, X.; Li, W.; Cao, Z.; Niu, S. Dailydialog: A manually labelled multi-turn dialogue dataset. In Proceedings of the Eighth International Joint Conference on Natural Language Processing, Taipei, Taiwan, 1 December 2017; pp. 986–995. [Google Scholar]
- Ghosal, D.; Majumder, N.; Poria, S.; Chhaya, N.; Gelbukh, A. Dialoguegcn: A graph convolutional neural network for emotion recognition in conversation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, Hong Kong, China, 3–7 November 2019; pp. 154–164. [Google Scholar]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly optimized Bert pretraining approach. arXiv 2019, arXiv:1907.11692. [Google Scholar]
- Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.G.; Salakhutdinov, R.; Le, Q.V. Xlnet: Generalized autoregressive pretraining for language understanding. In Advance in Neural Information Processing Systems; Curran Associates: Red Hook, NY, USA, 2019; pp. 5754–5764. [Google Scholar]
Intra-Speaker | Inter-Speaker | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
> | ≤ | > | ≤ | > | ≤ | > | ≤ | |
A | A | B | B | A | A | B | B | |
A | A | B | B | B | B | A | A |
Intra-Task | Inter-Task | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
< | = | > | < | = | > | < | = | > | < | = | > | |
S | S | S | A | A | A | S | S | S | A | A | A | |
S | S | S | A | A | A | A | A | A | S | S | S |
Models | Mastodon | DailyDialog | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SC | DAR | SC | DAR | |||||||||
P (%) | R (%) | F1 (%) | P (%) | R (%) | F1 (%) | P (%) | R (%) | F1 (%) | P (%) | R (%) | F1 (%) | |
HEC | - | - | - | 56.1 | 55.7 | 56.5 | - | - | - | 77.8 | 76.5 | 77.8 |
CASA | - | - | - | 56.4 | 57.1 | 55.7 | - | - | - | 78.0 | 76.5 | 77.9 |
DialogueRNN | 41.5 | 42.8 | 40.5 | - | - | - | 40.3 | 37.7 | 44.5 | - | - | - |
DialogueGCN | 42.4 | 43.4 | 41.4 | - | - | - | 43.1 | 44.5 | 41.8 | - | - | - |
JointDAS | 36.1 | 41.6 | 37.6 | 55.6 | 51.9 | 53.2 | 35.4 | 28.8 | 31.2 | 76.2 | 74.5 | 75.1 |
IIIM | 38.7 | 40.1 | 39.4 | 56.3 | 52.2 | 54.3 | 38.9 | 28.5 | 33.0 | 76.5 | 74.9 | 75.7 |
DCR-Net | 43.2 | 47.3 | 45.1 | 60.3 | 56.9 | 58.6 | 56.0 | 40.1 | 45.4 | 79.1 | 79.0 | 79.1 |
BCDCN | 38.2 | 62.0 | 45.9 | 57.3 | 61.7 | 59.4 | 55.2 | 45.7 | 48.6 | 80.0 | 80.6 | 80.3 |
Co-GAT | 44.0 | 53.2 | 48.1 | 60.4 | 60.6 | 60.5 | 65.9 | 45.3 | 51.0 | 81.0 | 78.1 | 79.4 |
TSCL | 46.1 | 58.7 | 51.6 | 61.2 | 61.6 | 60.8 | 56.6 | 49.2 | 51.9 | 78.8 | 79.8 | 79.3 |
MIRER | 55.6 | 57.7 | 56.5 | 64.1 | 61.5 | 62.9 | 60.9 | 47.3 | 53.2 | 80.8 | 80.5 | 80.7 |
Variants | Mastodon | DailyDialog | ||
---|---|---|---|---|
DSC | DAR | DSC | DAR | |
MIRER | 56.5 | 62.9 | 53.2 | 80.7 |
w/o Label Embeddings | 53.6 | 61.2 | 50.6 | 78.9 |
w/o SATD-HGT | 54.8 | 61.7 | 50.4 | 79.7 |
w/o CNNs | 55.3 | 60.9 | 50.9 | 79.5 |
w/o DTRD-HGT | 54.2 | 60.4 | 49.7 | 79.8 |
Models | Mastodon | ||||||
---|---|---|---|---|---|---|---|
DSC | DAR | ||||||
P (%) | R (%) | F1 (%) | P (%) | R (%) | F1 (%) | ||
BERT | +Linear | 61.8 | 61.1 | 60.6 | 70.2 | 67.5 | 68.8 |
+Co-GAT | 66.1 | 58.1 | 61.5 | 70.7 | 67.6 | 69.1 | |
+MIRER | 65.1 | 66.3 | 65.7 | 72.9 | 71.7 | 72.3 | |
RoBERTa | +Linear | 59.7 | 54.4 | 55.7 | 61.4 | 61.8 | 61.6 |
+Co-GAT | 64.3 | 58.8 | 61.3 | 67.5 | 64.8 | 66.1 | |
+MIRER | 62.5 | 64.6 | 63.5 | 69.4 | 67.8 | 68.6 | |
XLNet | +Linear | 56.6 | 60.9 | 58.7 | 63.4 | 61.8 | 62.6 |
+Co-GAT | 66.1 | 65.8 | 65.9 | 69.2 | 66.0 | 67.5 | |
+MIRER | 67.2 | 68.3 | 67.7 | 70.9 | 68.5 | 69.7 |
Speaker | Utterance | Step = 1 | Step = 2 | Gold |
---|---|---|---|---|
A | That dress is very pretty. Why don’t you like it? | happiness | happiness | happiness |
B | It’s too loud. | neutral | neutral | neutral |
A | We have been looking around for many hours. What on earth are you looking for? | neutral | angry | angry |
B | Well, you know, those styles or colors don’t suit me. | neutral | neutral | neutral |
A | What style do you want? | neutral | neutral | neutral |
B | I want to buy a V-neck checked sweater, and it should be tight. | neutral | neutral | neutral |
A | Oh, I see. How about the color? | neutral | neutral | neutral |
B | Quiet color. | neutral | neutral | neutral |
A | I know a shop selling this kind of sweater. | neutral | neutral | neutral |
B | Really? Let’s go there. | neutral | surprise | surprise |
Speaker | Utterance | Step = 1 | Step = 2 | Gold |
---|---|---|---|---|
A | My face? | question | question | question |
B | Ugly? | question | question | question |
A | It’s more likely than you think. | answer | statement | statement |
B | Very wrong. | disagreement | disagreement | disagreement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Chen, X. Multiple Information-Aware Recurrent Reasoning Network for Joint Dialogue Act Recognition and Sentiment Classification. Information 2023, 14, 593. https://doi.org/10.3390/info14110593
Li S, Chen X. Multiple Information-Aware Recurrent Reasoning Network for Joint Dialogue Act Recognition and Sentiment Classification. Information. 2023; 14(11):593. https://doi.org/10.3390/info14110593
Chicago/Turabian StyleLi, Shi, and Xiaoting Chen. 2023. "Multiple Information-Aware Recurrent Reasoning Network for Joint Dialogue Act Recognition and Sentiment Classification" Information 14, no. 11: 593. https://doi.org/10.3390/info14110593
APA StyleLi, S., & Chen, X. (2023). Multiple Information-Aware Recurrent Reasoning Network for Joint Dialogue Act Recognition and Sentiment Classification. Information, 14(11), 593. https://doi.org/10.3390/info14110593