TeCre: A Novel Temporal Conflict Resolution Method Based on Temporal Knowledge Graph Embedding
Abstract
:1. Introduction
- (1)
- We propose a novel TKG-based temporal conflict detection method. The proposed method leverages the TKGE and the temporal conflict constraints to discover the temporal conflict of the facts in the KG.
- (2)
- We propose a conflict resolution method based on the TKGE method to eliminate the conflicts. To solve the temporal conflict problems of the TKG, the proposed method deletes the conflicting temporal information from the KG and utilizes the knowledge completion method to complete the missing time information.
- (3)
- Through a large number of experiments on four real datasets, the effectiveness of the proposed method is verified. Experimental results show that TeCre improves the MRR of the baseline method by at least 5.46% and improves at least 3.2% on Hits@10.
2. Related Work
2.1. Temporal Knowledge Graph Embedding
2.2. Temporal Knowledge Graph Conflict Resolution
3. Problem Statement
- 1.
- <Alexander, retirement from, NSA, [2014.3.28,now]>;
- 2.
- <Alexander, work as, IronNet Cybersecurity, [2014.5,now]>;
- 3.
- <Alexander, work as, 1st Commander of the USCC, [2010,2015]>;
- 4.
- <Alexander, work as, 16th Director of NSA, [2005,2014]>;
- 5.
- <Alexander, work as, Deputy Chief of Staff G-2, [2005,2014]>;
- 6.
- <Alexander, work as, Commanding General of the U.S. INSCOM, [2001,2003]>.
4. Proposed Method
4.1. Temporal Conflict Constraint
4.2. Temporal Sequence Vectoring
4.3. Error Time Correction
4.4. Proposed Algorithm
Algorithm 1 Temporal conflict resolution algorithm based on TKGE |
Input: A set of facts with conflicts in KG G Output: KG without temporal conflict facts 1: Initialize facts , 2: for all facts do 3: 4: 5: 6: Put temporal conflicts fact into 7: for all facts do 8: 9: 10: Put corrected facts into 11: for all do 12: 13: 14: return |
5. Experimental Results and Analysis
5.1. Datasets
5.2. Link Prediction Settings
5.3. Baseline Methods
5.4. Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas, D.; Mendes, P.N.; Hellmann, S.; Morsey, M.; Van Kleef, P.; Auer, S.; et al. Dbpedia—A large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web 2015, 6, 167–195. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, T.; Cohen, W.; Hruschka, E.; Talukdar, P.; Yang, B.; Betteridge, J.; Carlson, A.; Dalvi, B.; Gardner, M.; Kisiel, B.; et al. Never-ending learning. Commun. ACM 2018, 61, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Hoffart, J.; Suchanek, F.M.; Berberich, K.; Weikum, G. YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intell. 2013, 194, 28–61. [Google Scholar] [CrossRef] [Green Version]
- Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; Taylor, J. Freebase: A collaboratively created graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada, 10–12 June 2008; pp. 1247–1250. [Google Scholar] [CrossRef]
- Gaur, M.; Gunaratna, K.; Srinivasan, V.; Jin, H. Iseeq: Information seeking question generation using dynamic meta-information retrieval and knowledge graphs. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, online, 22 February–1 March 2022; Volume 36, pp. 10672–10680. [Google Scholar] [CrossRef]
- Liu, L.; Du, B.; Xu, J.; Xia, Y.; Tong, H. Joint Knowledge Graph Completion and Question Answering. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; pp. 1098–1108. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Y.; Wang, Y.; Bai, J.; Song, X.; King, I. Attentive Knowledge-aware Graph Convolutional Networks with Collaborative Guidance for Personalized Recommendation. In Proceedings of the 38th IEEE International Conference on Data Engineering, Kuala Lumpur, Malaysia, 9 May 2022; pp. 299–311. [Google Scholar] [CrossRef]
- Xue, B.; Zou, L. Knowledge Graph Quality Management: A Comprehensive Survey. IEEE Trans. Knowl. Data Eng. 2022, 1. [Google Scholar] [CrossRef]
- Wang, M.; Qiu, L.; Wang, X. A survey on knowledge graph embeddings for link prediction. Symmetry 2021, 13, 485. [Google Scholar] [CrossRef]
- Thomas, P.T.; Gerhard, W.; Fabian, S. YAGO 4: A Reason-able Knowledge Base. In Proceedings of the The Semantic Web, Athens, Greece, 2–6 November 2020; pp. 583–596. [Google Scholar]
- Vrandečić, D.; Krötzsch, M. Wikidata: A free collaborative knowledgebase. Commun. ACM 2014, 57, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Nayyeri, M.; Alkhoury, F.; Yazdi, H.S.; Lehmann, J. Temporal knowledge graph embedding model based on additive time series decomposition. arXiv 2019, arXiv:1911.07893. [Google Scholar]
- Dylla, M.; Sozio, M.; Theobald, M. Resolving Temporal Conflicts in Inconsistent RDF Knowledge Bases. Coord. Chem. Rev. 2012, 2, 474–493. [Google Scholar]
- Lu, L.; Fang, J.; Zhao, P.; Xu, J.; Yin, H.; Zhao, L. Eliminating temporal conflicts in uncertain temporal knowledge graphs. In Proceedings of the International Conference on Web Information Systems Engineering, Dubai, United Arab Emirates, 12–15 November 2018; pp. 333–347. [Google Scholar] [CrossRef]
- Abedini, F.; Keyvanpour, M.R.; Menhaj, M.B. Correction Tower: A general embedding method of the error recognition for the knowledge graph correction. Int. J. Pattern Recognit. Artif. Intell. 2020, 34, 2059034. [Google Scholar] [CrossRef]
- Chekol, M.; Pirrò, G.; Schoenfisch, J.; Stuckenschmidt, H. Marrying uncertainty and time in knowledge graphs. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31, pp. 88–94. [Google Scholar]
- García-Durán, A.; Dumančić, S.; Niepert, M. Learning Sequence Encoders for Temporal Knowledge Graph Completion. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October–November 2018; pp. 4816–4821. [Google Scholar] [CrossRef]
- Wang, Y.; Qiao, Y.; Ma, J.; Hu, G.; Zhang, C.; Sangaiah, A.K.; Zhang, H.; Ren, K. A Novel Time Constraint-Based Approach for Knowledge Graph Conflict Resolution. Appl. Sci. 2019, 9, 4399. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Liu, T.; Ge, T.; Sha, L.; Chang, B.; Li, S.; Sui, Z. Towards time-aware knowledge graph completion. In Proceedings of the 26th International Conference on Computational Linguistics, Osaka, Japan, 11–16 December 2016; pp. 1715–1724. [Google Scholar]
- Leblay, J.; Chekol, M.W. Deriving Validity Time in Knowledge Graph. In Proceedings of the Companion of the The Web Conference 2018 on The Web Conference 2018, Lyon, France, 23–27 April 2018; pp. 1771–1776. [Google Scholar] [CrossRef] [Green Version]
- Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating Embeddings for Modeling Multi-relational Data. In Proceedings of the 27th Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 2787–2795. [Google Scholar]
- Yang, B.; Yih, S.W.t.; He, X.; Gao, J.; Deng, L. Embedding Entities and Relations for Learning and Inference in Knowledge Bases. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Jia, B.; Wang, C.; Zhao, H.; Shi, L. An Entity Linking Algorithm Derived from Graph Convolutional Network and Contextualized Semantic Relevance. Symmetry 2022, 14, 2060. [Google Scholar] [CrossRef]
- Shen, M.; Xu, K.; Yang, K.; Chen, H.H. Towards efficient virtual network embedding across multiple network domains. In Proceedings of the 22nd International Symposium of Quality of Service, Hong Kong, China, 26–27 May 2014; pp. 61–70. [Google Scholar] [CrossRef]
- Messner, J.; Abboud, R.; Ceylan, I.I. Temporal knowledge graph completion using box embeddings. In Proceedings of the AAAI Conference on Artificial Intelligence, online, 22 February–1 March 2022; Volume 36, pp. 7779–7787. [Google Scholar] [CrossRef]
- Dasgupta, S.S.; Ray, S.N.; Talukdar, P.P. HyTE: Hyperplane-based Temporally aware Knowledge Graph Embedding. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, United Arab Emirates, 7–11 December 2018; pp. 2001–2011. [Google Scholar] [CrossRef] [Green Version]
- Trivedi, R.; Dai, H.; Wang, Y.; Song, L. Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 3462–3471. [Google Scholar]
- Goel, R.; Kazemi, S.M.; Brubaker, M.; Poupart, P. Diachronic embedding for temporal knowledge graph completion. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 3988–3995. [Google Scholar]
- Bianchi, F.; Palmonari, M.; Nozza, D. Towards encoding time in text-based entity embeddings. In Proceedings of the 17th International Semantic Web Conference, Monterey, CA, USA, 8–12 October 2018; Volume 11136, pp. 56–71. [Google Scholar] [CrossRef]
- Xiao, H.; Chen, Y.; Shi, X. Knowledge Graph Embedding Based on Multi-View Clustering Framework. IEEE Trans. Knowl. Data Eng. 2021, 33, 585–596. [Google Scholar] [CrossRef]
- Fu, X.; Sun, X.; Wu, H.; Cui, L.; Huang, J.Z. Weakly supervised topic sentiment joint model with word embeddings. Knowl.-Based Syst. 2018, 147, 43–54. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, T.; Ge, T.; Sha, L.; Li, S.; Chang, B.; Sui, Z. Encoding Temporal Information for Time-Aware Link Prediction. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5 November 2016; pp. 2350–2354. [Google Scholar] [CrossRef]
- Fleischhacker, D.; Paulheim, H.; Bryl, V.; Völker, J.; Bizer, C. Detecting Errors in Numerical Linked Data Using Cross-Checked Outlier Detection. In Proceedings of the 13th International Semantic Web Conference, Riva del Garda, Italy, 19–23 October 2014; Volume 8796, pp. 357–372. [Google Scholar] [CrossRef] [Green Version]
- Wienand, D.; Paulheim, H. Detecting Incorrect Numerical Data in DBpedia. In Proceedings of the Semantic Web: Trends and Challenges - 11th International Conference, Anissaras, Crete, Greece, 25–29 May 2014; Volume 8465, pp. 504–518. [Google Scholar] [CrossRef]
- Paulheim, H. Identifying Wrong Links between Datasets by Multi-dimensional Outlier Detection. In Proceedings of the 3rd International Workshop on Debugging Ontologies and Ontology Mappings, Hersonissou, Greece, 26 May 2014; Volume 1162, pp. 27–38. [Google Scholar]
- Li, H.; Li, Y.; Xu, F.; Zhong, X. Probabilistic Error Detecting in Numerical Linked Data. In Proceedings of the 26th International Conference on Database and Expert Systems Applications, Valencia, Spain, 1–4 September 2015; Volume 9261, pp. 61–75. [Google Scholar] [CrossRef]
- Gao, Y.; Feng, L.; Kan, Z.; Han, Y.; Qiao, L.; Li, D. Modeling Precursors for Temporal Knowledge Graph Reasoning via Auto-encoder Structure. In Proceedings of the 31st International Joint Conference on Artificial Intelligence, IJCAI-22, Vienna, Austria, 23–29 July 2022; pp. 2044–2051. [Google Scholar] [CrossRef]
- Padia, A. Cleaning Noisy Knowledge Graphs. In Proceedings of the Doctoral Consortium at the 16th International Semantic Web Conference, Vienna, Austria, 22 October 2017; Volume 1962. [Google Scholar]
- Chen, Y.; Wang, D.Z. Knowledge expansion over probabilistic knowledge bases. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, Snowbird, UT, USA, 22–27 June 2014; pp. 649–660. [Google Scholar] [CrossRef]
- Chekol, M.W.; Pirrò, G.; Schoenfisch, J.; Stuckenschmidt, H. TeCoRe: Temporal Conflict Resolution in Knowledge Graphs. Proc. VLDB Endow. 2017, 10, 1929–1932. [Google Scholar] [CrossRef]
- Zhang, C.; Pang, H.; Liu, J.; Tang, S.; Zhang, R.; Wang, D.; Sun, L. Toward Edge-Assisted Video Content Intelligent Caching With Long Short-Term Memory Learning. IEEE Access 2019, 7, 152832–152846. [Google Scholar] [CrossRef]
- Jin, W.; Qu, M.; Jin, X.; Ren, X. Recurrent Event Network: Autoregressive Structure Inferenceover Temporal Knowledge Graphs. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Barcelona, Spain, 8–12 November 2020; pp. 6669–6683. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, M.; Fan, C.; Cheng, G.; Zhang, Y. Learning from history: Modeling temporal knowledge graphs with sequential copy-generation networks. In Proceedings of the 32rd AAAI Conference on Artificial Intelligence, online, 22 February–1 March 2021; Volume 35, pp. 4732–4740. [Google Scholar]
- Li, Z.; Guan, S.; Jin, X.; Peng, W.; Lyu, Y.; Zhu, Y.; Bai, L.; Li, W.; Guo, J.; Cheng, X. Complex Evolutional Pattern Learning for Temporal Knowledge Graph Reasoning. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Dublin, Ireland, 22–27 May 2022; pp. 290–296. [Google Scholar] [CrossRef]
Fact | Predicate and Timestamp Sequence | Head Entity | Tail Entity |
---|---|---|---|
<Alexander, retirement from, NSA, [2014.3.28,now]> | [retirement from,2y,0y,1y,4y,03m,2d,8d] | Alexander | NSA |
<Alexander, work as, IronNet Cybersecurity, [2014.5,now]> | [work as,2y,0y,1y,4y,now] | Alexander | IronNet Cybersecurity |
<Alexander, work as, 1st Commander of the USCC, [2010,2015]> | [work as, 2y,0y,1y,4y, 2y,0y,1y,5y] | Alexander | 1st Commander of the USCC |
Dataset | YAGO15K | ICEWS14 | ICEWS05-15 | WIKIDATA |
---|---|---|---|---|
Entities | 15403 | 6869 | 10094 | 11134 |
Relations | 34 | 230 | 251 | 95 |
Facts | 138056 | 96730 | 461329 | 150079 |
Time Span | 1513–2017 | 2014 | 2005–2015 | 25–2020 |
YAGO15K | ICEWS’14 | ICEWS05-15 | WIKIDATA | |||||
---|---|---|---|---|---|---|---|---|
Metrics | MRR | Hits@10 | MRR | Hits@10 | MRR | Hits@10 | MRR | Hits@10 |
OEC | 0.133 | 0.178 | 0.141 | 0.201 | 0.258 | 0.244 | 0.218 | 0.306 |
CEN | 0.140 | 0.197 | 0.149 | 0.203 | 0.285 | 0.255 | 0.264 | 0.341 |
MUTKG | 0.156 | 0.215 | 0.177 | 0.235 | 0.297 | 0.267 | 0.285 | 0.357 |
ETC | 0.163 | 0.265 | 0.186 | 0.338 | 0.334 | 0.368 | 0.308 | 0.397 |
Kgedl | 0.171 | 0.311 | 0.192 | 0.356 | 0.378 | 0.397 | 0.324 | 0.428 |
RE-NET | 0.175 | 0.334 | 0.215 | 0.388 | 0.376 | 0.385 | 0.356 | 0.446 |
CyGNet | 0.183 | 0.383 | 0.256 | 0.403 | 0.403 | 0.406 | 0.384 | 0.501 |
TeCre | 0.198 | 0.415 | 0.281 | 0.465 | 0.425 | 0.483 | 0.435 | 0.556 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Zhou, C.; Chen, Y.; Wang, Y.; Hu, G.; Qiao, Y. TeCre: A Novel Temporal Conflict Resolution Method Based on Temporal Knowledge Graph Embedding. Information 2023, 14, 155. https://doi.org/10.3390/info14030155
Ma J, Zhou C, Chen Y, Wang Y, Hu G, Qiao Y. TeCre: A Novel Temporal Conflict Resolution Method Based on Temporal Knowledge Graph Embedding. Information. 2023; 14(3):155. https://doi.org/10.3390/info14030155
Chicago/Turabian StyleMa, Jiangtao, Chenyu Zhou, Yonggang Chen, Yanjun Wang, Guangwu Hu, and Yaqiong Qiao. 2023. "TeCre: A Novel Temporal Conflict Resolution Method Based on Temporal Knowledge Graph Embedding" Information 14, no. 3: 155. https://doi.org/10.3390/info14030155
APA StyleMa, J., Zhou, C., Chen, Y., Wang, Y., Hu, G., & Qiao, Y. (2023). TeCre: A Novel Temporal Conflict Resolution Method Based on Temporal Knowledge Graph Embedding. Information, 14(3), 155. https://doi.org/10.3390/info14030155