Develop a Lightweight Convolutional Neural Network to Recognize Palms Using 3D Point Clouds
Abstract
:1. Introduction
2. Related Work
2.1. Overview for Palm Recognition
2.2. Overview of 3D Convolution Neural Networks
2.3. Overview of 2D Convolution Neural Networks
2.4. Projection Methods
3. Proposed Approaches
3.1. Basic Projection (BP)
3.2. Multi-View Projection (MVP)
3.2.1. Rotation and Affine on XY Plane
3.2.2. Shear on X Axis and Y Axis
3.2.3. Primary Experiment for MVP
3.3. Tiny-MobileNet (TMBNet)
3.3.1. Light Inverted Residual Block (LIRB)
3.3.2. Analysis of FLOPs
4. Experiments
4.1. PolyU-3D Contact-Free Hand Dataset (PolyU-CFHD)
4.2. Classic 2D CNNs with MVP
4.3. Leave-One-Out Comparison of TMBNet
4.4. Comparison of TMBNet with 3D Baselines
4.5. Input Shape Reduction for More Smaller TMBNet
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TMBNet | Tiny-MobileNet |
IRB | Inverted Residual Block |
LIRB | Light Inverted Residual Block |
MVP | Multi-View Projection |
BP | Basic Projection |
CNN | Convolutional Neural Network |
PCA | Principal Component Analysis |
SVM | Support Vector Machine |
GAP | Global Average Pooling |
FLOPs | floating-point operations |
PolyU-CFHD | PolyU-3D Contact-Free Hand Dataset |
References
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf. Process. Syst. 2017, 30, 5105–5114. [Google Scholar]
- Ekinci, M.; Aykut, M. Gabor-based kernel PCA for palmprint recognition. Electron. Lett. 2007, 43, 1077–1079. [Google Scholar] [CrossRef]
- Xu, X.; Guo, Z. Multispectral palmprint recognition using quaternion principal component analysis. In Proceedings of the 2010 International Workshop on Emerging Techniques and Challenges for Hand-Based Biometrics, Istanbul, Turkey, 22 August 2010; IEEE: New York, NY, USA, 2010; pp. 1–5. [Google Scholar]
- Dian, L.; Dongmei, S. Contactless palmprint recognition based on convolutional neural network. In Proceedings of the 2016 IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China, 6–10 November 2016; IEEE: New York, NY, USA, 2016; pp. 1363–1367. [Google Scholar]
- Svoboda, J.; Masci, J.; Bronstein, M.M. Palmprint recognition via discriminative index learning. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; IEEE: New York, NY, USA, 2016; pp. 4232–4237. [Google Scholar]
- Zhong, D.; Zhu, J. Centralized large margin cosine loss for open-set deep palmprint recognition. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 1559–1568. [Google Scholar] [CrossRef]
- Chen, W.; Yu, Z.; Wang, Z.; Anandkumar, A. Automated synthetic-to-real generalization. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 1746–1756. [Google Scholar]
- Zhao, K.; Shen, L.; Zhang, Y.; Zhou, C.; Wang, T.; Zhang, R.; Ding, S.; Jia, W.; Shen, W. BézierPalm: A Free Lunch for Palmprint Recognition. In Lecture Notes in Computer Science, Part XIII, Proceedings of the Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022; Springer: New York, NY, USA, 2022; pp. 19–36. [Google Scholar]
- Kanhangad, V.; Kumar, A.; Zhang, D. A unified framework for contactless hand verification. IEEE Trans. Inf. Forensics Secur. 2011, 6, 1014–1027. [Google Scholar] [CrossRef]
- Qi, C.R.; Su, H.; Nießner, M.; Dai, A.; Yan, M.; Guibas, L.J. Volumetric and multi-view cnns for object classification on 3d data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5648–5656. [Google Scholar]
- Shi, S.; Wang, X.; Li, H. Pointrcnn: 3D object proposal generation and detection from point cloud. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 770–779. [Google Scholar]
- Xu, C.; Wu, B.; Wang, Z.; Zhan, W.; Vajda, P.; Keutzer, K.; Tomizuka, M. Squeezesegv3: Spatially-adaptive convolution for efficient point-cloud segmentation. In Lecture Notes in Computer Science, Part XXVIII 16, Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–19. [Google Scholar]
- Chen, Y.; Hu, V.T.; Gavves, E.; Mensink, T.; Mettes, P.; Yang, P.; Snoek, C.G. Pointmixup: Augmentation for point clouds. In Lecture Notes in Computer Science, Part III 16, Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 330–345. [Google Scholar]
- Kim, S.; Lee, S.; Hwang, D.; Lee, J.; Hwang, S.J.; Kim, H.J. Point cloud augmentation with weighted local transformations. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 548–557. [Google Scholar]
- Lee, D.; Lee, J.; Lee, J.; Lee, H.; Lee, M.; Woo, S.; Lee, S. Regularization strategy for point cloud via rigidly mixed sample. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 15900–15909. [Google Scholar]
- Fei, L.; Lu, G.; Jia, W.; Teng, S.; Zhang, D. Feature extraction methods for palmprint recognition: A survey and evaluation. IEEE Trans. Syst. Man Cybern. Syst. 2018, 49, 346–363. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. arXiv 2016, arXiv:1611.01578. [Google Scholar]
- Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view convolutional neural networks for 3d shape recognition. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 945–953. [Google Scholar]
- Li, L.; Zhu, S.; Fu, H.; Tan, P.; Tai, C.L. End-to-end learning local multi-view descriptors for 3d point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1919–1928. [Google Scholar]
- Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; Li, H. Pv-rcnn: Point-voxel feature set abstraction for 3D object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 10529–10538. [Google Scholar]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1580–1589. [Google Scholar]
- Gao, S.H.; Cheng, M.M.; Zhao, K.; Zhang, X.Y.; Yang, M.H.; Torr, P. Res2net: A new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 652–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Accuracy | MFLOPs | |
---|---|---|
VGG-16 w/BP | 74.85 | 15,670 |
VGG-16 w/MVP | 98.82 | 15,670 |
MobileNetv2 w/BP | 64.89 | 290 |
MobileNetv2 w/MVP | 97.95 | 290 |
Input Shape | Layer | Output Channel | Down Sampling |
---|---|---|---|
224 × 224 | Input | 3 | 1 |
224 × 224 | Conv-3 × 3 | 16 | 2 |
112 × 112 | LIRB | 32 | 1 |
112 × 112 | Max Pool | 32 | 2 |
64 × 64 | LIRB | 64 | 1 |
64 × 64 | Max Pool | 64 | 2 |
32 × 32 | LIRB | 128 | 1 |
32 × 32 | Max Pool | 128 | 2 |
16 × 16 | LIRB | 256 | 1 |
16 × 16 | Max Pool | 256 | 2 |
8 × 8 | LIRB | 512 | 1 |
8 × 8 | Global Average Pool | 512 | global |
1 × 1 | FC | 114 | 1 |
1 × 1 | Output | 114 | 1 |
Accuracy | MFLOPs | |
---|---|---|
VGG-16 | 74.85 | 15,670 |
ResNet-50 | 72.61 | 3608 |
EfficientNet-B0 | 57.27 | 372 |
MobileNetv2 | 64.89 | 290 |
TMBNet | 61.40 | 95 |
VGG-16 w/MVP | 98.82 | 15,670 |
ResNet-50 w/MVP | 98.53 | 3608 |
EfficientNet-B0 w/MVP | 97.66 | 372 |
MobileNetv2 w/MVP | 97.95 | 290 |
TMBNet w/MVP | 95.61 | 95 |
Mean Accuracy | Min Accuracy | Max Accuracy | |
---|---|---|---|
VGG-16 | 98.78 | 97.60 | 99.33 |
ResNet-50 | 98.38 | 97.15 | 98.96 |
EfficientNet-B0 | 97.17 | 95.13 | 98.64 |
MobileNetv2 | 97.25 | 95.37 | 98.81 |
TMBNet | 96.49 | 94.92 | 97.25 |
Input Shape | Accuracy | MFLOPs | |
---|---|---|---|
PointNet | - | 92.90 | 440 |
PointNet++ | - | 93.26 | 1680 |
TMBNet w/MVP | 224 × 224 | 95.61 | 95 |
TMBNet w/MVP | 160 × 160 | 94.28 | 48 |
TMBNet w/MVP | 120 × 120 | 93.47 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.-M.; Cheng, C.-Y.; Lin, C.-L.; Lee, C.-C.; Fan, K.-C. Develop a Lightweight Convolutional Neural Network to Recognize Palms Using 3D Point Clouds. Information 2023, 14, 381. https://doi.org/10.3390/info14070381
Zhang Y-M, Cheng C-Y, Lin C-L, Lee C-C, Fan K-C. Develop a Lightweight Convolutional Neural Network to Recognize Palms Using 3D Point Clouds. Information. 2023; 14(7):381. https://doi.org/10.3390/info14070381
Chicago/Turabian StyleZhang, Yu-Ming, Chia-Yuan Cheng, Chih-Lung Lin, Chun-Chieh Lee, and Kuo-Chin Fan. 2023. "Develop a Lightweight Convolutional Neural Network to Recognize Palms Using 3D Point Clouds" Information 14, no. 7: 381. https://doi.org/10.3390/info14070381
APA StyleZhang, Y. -M., Cheng, C. -Y., Lin, C. -L., Lee, C. -C., & Fan, K. -C. (2023). Develop a Lightweight Convolutional Neural Network to Recognize Palms Using 3D Point Clouds. Information, 14(7), 381. https://doi.org/10.3390/info14070381