GSCEU-Net: An End-to-End Lightweight Skin Lesion Segmentation Model with Feature Fusion Based on U-Net Enhancements
Abstract
:1. Introduction
- The proposed GSCEU-Net model adopts the overall U-shaped encoding–decoding structure of U-Net [10]. However, by reducing the number of channels and by incorporating newly designed Separate Convolution (SConv) and Ghost SConv (GSC) modules, along with an Efficient Channel Attention (ECA) module [19], it is able to attain a light weight, which is reflected in the reduction of the number of model parameters and floating-point operations performed;
- A newly designed SConv module is proposed as a technical advancement derived from the recent FasterNet’s partial convolution (PConv) [20] with additional improvements. It upgrades the PConv replication path to a 1 × 1 convolution path and dynamically calculates the input channel numbers, thereby extracting spatial features from image regions and accelerating the model training convergence;
- The upgraded path after SConv convolution is further connected with the Ghost module residuals [21] to form a newly designed GSC module. Multi-Layer Perceptron (MLP) [22] is utilized to absorb hidden layer features, and DropPath is applied to refine features and prevent model overfitting, thus further enhancing the model’s generalization ability.
- The decoding part of the proposed model utilizes the ECA attention mechanism, allocating model weights with minimal complexity cost, so as to optimize the decoding process.
2. Related Work
2.1. Medical Image Segmentation
2.2. Skin Lesion Segmentation
2.3. Attention
2.4. Lightweight CNNs
3. Proposed Model: GSCEU-Net
3.1. Overall Structure
3.2. Separate Convolution (SConv)
3.3. Ghost Separate Convolution (GSC)
3.4. Efficient Channel Attention (ECA)
4. Experiments and Results
4.1. Datasets and Data Preprocessing
4.2. Experimental Environment
4.3. Evaluation Metrics
4.4. Loss Function
4.5. Results
4.5.1. ISIC2018 Experiments
4.5.2. PH2 Experiments
4.5.3. Private Dataset Experiments
4.5.4. Ablation Study Experiments
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef]
- Madan, V.; Lear, J.T.; Szeimies, R.-M. Non-melanoma skin cancer. Lancet 2010, 375, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Baig, R.; Bibi, M.; Hamid, A.; Kausar, S.; Khalid, S. Deep learning approaches towards skin lesion segmentation and classification from dermoscopic images-a review. Curr. Med. Imaging 2020, 16, 513–533. [Google Scholar] [CrossRef] [PubMed]
- Silveira, M.; Nascimento, J.C.; Marques, J.S.; Marçal, A.R.; Mendonça, T.; Yamauchi, S.; Maeda, J.; Rozeira, J. Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J. Sel. Top. Signal Process. 2009, 3, 35–45. [Google Scholar] [CrossRef]
- Emre Celebi, M.; Wen, Q.; Hwang, S.; Iyatomi, H.; Schaefer, G. Lesion border detection in dermoscopy images using ensembles of thresholding methods. Skin Res. Technol. 2013, 19, e252–e258. [Google Scholar] [CrossRef] [PubMed]
- Garnavi, R.; Aldeen, M.; Celebi, M.E.; Varigos, G.; Finch, S. Border detection in dermoscopy images using hybrid thresholding on optimized color channels. Comput. Med. Imaging Graph. 2011, 35, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ashour, A.S.; Smarandache, F. A novel skin lesion detection approach using neutrosophic clustering and adaptive region growing in dermoscopy images. Symmetry 2018, 10, 119. [Google Scholar] [CrossRef]
- Celebi, M.E.; Kingravi, H.A.; Iyatomi, H.; Lee, J.; Aslandogan, Y.A.; Van Stoecker, W.; Moss, R.; Malters, J.M.; Marghoob, A.A. Fast and accurate border detection in dermoscopy images using statistical region merging. In Proceedings of the Medical Imaging 2007: Image Processing, San Diego, CA, USA, 17–22 February 2007; pp. 1297–1306. [Google Scholar]
- Celebi, M.E.; Aslandogan, Y.A.; Bergstresser, P.R. Unsupervised border detection of skin lesion images. In Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’05), Las Vegas, NV, USA, 4–6 April 2005; Volume II, pp. 123–128. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 2019, 39, 1856–1867. [Google Scholar] [CrossRef]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B. Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Zhang, L.; Zhang, J.; Shen, P.; Zhu, G.; Li, P.; Lu, X.; Zhang, H.; Shah, S.A.; Bennamoun, M. Block level skip connections across cascaded V-Net for multi-organ segmentation. IEEE Trans. Med. Imaging 2020, 39, 2782–2793. [Google Scholar] [CrossRef]
- Alom, M.Z.; Yakopcic, C.; Hasan, M.; Taha, T.M.; Asari, V.K. Recurrent residual U-Net for medical image segmentation. J. Med. Imaging 2019, 6, 014006. [Google Scholar] [CrossRef]
- Chen, J.; He, T.; Zhuo, W.; Ma, L.; Ha, S.; Chan, S.-H.G. Tvconv: Efficient translation variant convolution for layout-aware visual processing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 12548–12558. [Google Scholar]
- Ruan, J.; Xiang, S.; Xie, M.; Liu, T.; Fu, Y. MALUNet: A Multi-Attention and Light-weight UNet for Skin Lesion Segmentation. In Proceedings of the 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, NV, USA, 6–8 December 2022; pp. 1150–1156. [Google Scholar]
- Codella, N.; Rotemberg, V.; Tschandl, P.; Celebi, M.E.; Dusza, S.; Gutman, D.; Helba, B.; Kalloo, A.; Liopyris, K.; Marchetti, M. Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). arXiv 2019, arXiv:1902.03368. [Google Scholar]
- Mendonça, T.; Ferreira, P.M.; Marques, J.S.; Marcal, A.R.; Rozeira, J. PH 2-A dermoscopic image database for research and benchmarking. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5437–5440. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11534–11542. [Google Scholar]
- Chen, J.; Kao, S.-h.; He, H.; Zhuo, W.; Wen, S.; Lee, C.-H.; Chan, S.-H.G. Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18 June 2023; pp. 12021–12031. [Google Scholar]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1580–1589. [Google Scholar]
- Tolstikhin, I.O.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.; Uszkoreit, J. Mlp-mixer: An all-mlp architecture for vision. Adv. Neural Inf. Process. Syst. 2021, 34, 24261–24272. [Google Scholar]
- Anwar, S.M.; Majid, M.; Qayyum, A.; Awais, M.; Alnowami, M.; Khan, M.K. Medical image analysis using convolutional neural networks: A review. J. Med. Syst. 2018, 42, 226. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv 2014, arXiv:1412.7062. [Google Scholar]
- Wang, Z.; Chen, J.; Hoi, S.C.H. Deep learning for image super-resolution: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3365–3387. [Google Scholar] [CrossRef]
- Liu, S.; Song, L.; Liu, X. Neural network for lung cancer diagnosis. In Computational Intelligence in Cancer Diagnosis; Elsevier: Amsterdam, The Netherlands, 2023; pp. 89–116. [Google Scholar]
- Valanarasu, J.M.J.; Patel, V.M. Unext: Mlp-based rapid medical image segmentation network. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore, 18–22 September 2022; pp. 23–33. [Google Scholar]
- Khan, M.A.; Sharif, M.; Akram, T.; Bukhari, S.A.C.; Nayak, R.S. Developed Newton-Raphson based deep features selection framework for skin lesion recognition. Pattern Recognit. Lett. 2020, 129, 293–303. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 142–158. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, K.; Majeed, F.; Siddique, A.; Meraj, T.; Rauf, H.T.; El-Meligy, M.A.; Sharaf, M.; Abd Elgawad, A.E.E. A lightweight approach for skin lesion detection through optimal features fusion. Comput. Mater. Contin. 2022, 70, 1617–1630. [Google Scholar] [CrossRef]
- Sebastian, V.B.; Unnikrishnan, A.; Balakrishnan, K. Gray level co-occurrence matrices: Generalisation and some new features. arXiv 2012, arXiv:1205.4831. [Google Scholar]
- Ali, A.-R.H.; Li, J.; Yang, G. Automating the ABCD rule for melanoma detection: A survey. IEEE Access 2020, 8, 83333–83346. [Google Scholar] [CrossRef]
- Zafar, M.; Sharif, M.I.; Sharif, M.I.; Kadry, S.; Bukhari, S.A.C.; Rauf, H.T. Skin lesion analysis and cancer detection based on machine/deep learning techniques: A comprehensive survey. Life 2023, 13, 146. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Mehta, S.; Rastegari, M.; Caspi, A.; Shapiro, L.; Hajishirzi, H. Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 552–568. [Google Scholar]
- Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun, F.; Wu, Y.; Tian, Y.; Vajda, P.; Jia, Y.; Keutzer, K. Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10734–10742. [Google Scholar]
- Mehta, S.; Rastegari, M. Mobilevit: Light-weight, general-purpose, and mobile-friendly vision transformer. arXiv 2021, arXiv:2110.02178. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar]
- Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; He, K. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv 2017, arXiv:1706.0267. [Google Scholar]
- Ruby, U.; Yendapalli, V. Binary cross entropy with deep learning technique for image classification. Int. J. Adv. Trends Comput. Sci. Eng. 2020, 9, 5393–5397. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S.-A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 4th International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar]
- Montazerolghaem, M.; Sun, Y.; Sasso, G.; Haworth, A. U-Net Architecture for Prostate Segmentation: The Impact of Loss Function on System Performance. Bioengineering 2023, 10, 412. [Google Scholar] [CrossRef]
Abbreviation | Full Name | Description |
---|---|---|
ECA | Efficient Channel Attention | A lightweight attention mechanism |
GSC | Ghost Separate Convolution | A backbone network for feature fusion |
MLP | Multi-Layer Perceptron | A neural network with input, hidden, and output layers. |
PConv | Partial Convolution | A lightweight partial convolution proposed by FasterNet |
SConv | Separate Convolution | An enhanced convolution proposed in this paper for feature extraction |
U-Net | U-Net | A convolutional neural network model commonly used for image segmentation |
Dataset | Total Size (Images) | Size of Training Set (Images) | Size of Validation Set (Images) | Size of Testing Set (Images) | Image Resolution (Pixels) |
---|---|---|---|---|---|
ISIC2018 [17] | 2594 | 1816 | 259 | 519 | 256 × 256 |
PH2 [18] | 200 | 200 | 256 × 256 | ||
Private dataset | 1010 | 808 | 101 | 101 | 256 × 256 |
Model | Parameters (Million) | GFLOPS | IoU | DSC | Acc | Sen |
---|---|---|---|---|---|---|
U-Net | 7.770 | 13.780 | 0.7887 | 0.8784 | 0.9508 | 0.8760 |
U-Net++ | 9.160 | 34.900 | 0.7952 | 0.8824 | 0.9528 | 0.8732 |
Attention-UNet | 8.730 | 16.740 | 0.7967 | 0.8833 | 0.9533 | 0.8591 |
UNeXt_S | 0.300 | 0.100 | 0.8057 | 0.8895 | 0.9557 | 0.8586 |
MALUNet | 0.175 | 0.083 | 0.8120 | 0.8924 | 0.9532 | 0.8875 |
GSCEU-Net (proposed model) | 0.041 | 0.081 | 0.8145 | 0.8948 | 0.9571 | 0.8743 |
Model | Parameters (Million) | GFLOPS | IoU | DSC | Acc | Sen |
---|---|---|---|---|---|---|
U-Net | 7.770 | 13.780 | 0.8062 | 0.8916 | 0.9276 | 0.9224 |
U-Net++ | 9.160 | 34.900 | 0.7929 | 0.8831 | 0.9238 | 0.8909 |
Attention-UNet | 8.730 | 16.740 | 0.7458 | 0.8505 | 0.9090 | 0.8241 |
UNeXt_S | 0.300 | 0.100 | 0.8077 | 0.8900 | 0.9277 | 0.8874 |
MALUNet | 0.175 | 0.083 | 0.8278 | 0.9048 | 0.9351 | 0.9484 |
GSCEU-Net (proposed model) | 0.041 | 0.081 | 0.8441 | 0.9140 | 0.9434 | 0.9473 |
Model | Parameters (Million) | GFLOPS | IoU | DSC | Acc | Sen |
---|---|---|---|---|---|---|
U-Net | 7.770 | 13.780 | 0.6254 | 0.7635 | 0.9119 | 0.7868 |
U-Net++ | 9.160 | 34.900 | 0.6283 | 0.7664 | 0.9171 | 0.7479 |
Attention-UNet | 8.730 | 16.740 | 0.6308 | 0.7695 | 0.9109 | 0.8160 |
UNeXt_S | 0.300 | 0.100 | 0.6397 | 0.7766 | 0.9143 | 0.7934 |
MALUNet | 0.175 | 0.083 | 0.6301 | 0.7698 | 0.9150 | 0.7797 |
GSCEU-Net (proposed model) | 0.041 | 0.081 | 0.6450 | 0.7804 | 0.9213 | 0.7731 |
Model | Parameters (Million) | GFLOPS | IoU | DSC | Acc | Sen |
---|---|---|---|---|---|---|
U-Net | 0.12 | 0.220 | 0.7868 | 0.8758 | 0.9503 | 0.8692 |
U-Net + SConv | 0.01 | 0.024 | 0.7744 | 0.8681 | 0.9463 | 0.8653 |
U-Net + GSC | 0.04 | 0.081 | 0.7858 | 0.8763 | 0.9504 | 0.8586 |
U-Net + GSC + ECA (i.e., proposed GSCEU-Net) | 0.04 | 0.081 | 0.8145 | 0.8948 | 0.9571 | 0.8743 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, S.; Wu, H.; Jiang, Y.; Ji, Z.; Zhao, L.; Liu, L.; Ganchev, I. GSCEU-Net: An End-to-End Lightweight Skin Lesion Segmentation Model with Feature Fusion Based on U-Net Enhancements. Information 2023, 14, 486. https://doi.org/10.3390/info14090486
Hao S, Wu H, Jiang Y, Ji Z, Zhao L, Liu L, Ganchev I. GSCEU-Net: An End-to-End Lightweight Skin Lesion Segmentation Model with Feature Fusion Based on U-Net Enhancements. Information. 2023; 14(9):486. https://doi.org/10.3390/info14090486
Chicago/Turabian StyleHao, Shengnan, Haotian Wu, Yanyan Jiang, Zhanlin Ji, Li Zhao, Linyun Liu, and Ivan Ganchev. 2023. "GSCEU-Net: An End-to-End Lightweight Skin Lesion Segmentation Model with Feature Fusion Based on U-Net Enhancements" Information 14, no. 9: 486. https://doi.org/10.3390/info14090486
APA StyleHao, S., Wu, H., Jiang, Y., Ji, Z., Zhao, L., Liu, L., & Ganchev, I. (2023). GSCEU-Net: An End-to-End Lightweight Skin Lesion Segmentation Model with Feature Fusion Based on U-Net Enhancements. Information, 14(9), 486. https://doi.org/10.3390/info14090486