Machine Learning Approaches in Multi-Cancer Early Detection
Abstract
:1. Introduction
2. Review Search Methodology
3. Cell-Free DNA Based MCED Tests
3.1. The Circulating Cell-Free Genome Atlas Study [11,12,13]
3.1.1. First CCGA Sub-Study [11]
3.1.2. Second CCGA Sub-Study [12]
3.1.3. Third CCGA Sub-Study [13,14]
3.2. SYMPLIFY [15]
3.3. SPOT-MAS [16]
3.3.1. Cancer Prediction Single-Feature Models
3.3.2. Cancer Prediction Combined-Feature Models
- Concatenated model: Use all nine features as a single data frame: XGBoost algorithm was the best with AUC of 88%.
- Ensemble model: using a stacking ensemble model with logistic regression to combine the predictions of the single-feature models. This model achieved the best performance with an AUC of 93%.
3.3.3. Tumor of Origin Prediction Models
3.4. Bao et al. [17]
3.5. Moldovan et al. [18]
Study | Data Type | Source | Study Type | Biomarker | Assay Method | Tumor Type | Sample Size | Sensitivity/Statistical Analysis | Cancer Detection ML Technique | TOO ML Technique | Cancer Detection Performance (Sensitivity% at Specificity%) | TOO Performance (Accuracy) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CCGA Galleri [11] | cfDNA | Plasma | Prospective case-control | WG methylation, SNV, SNV-WBC, SCNA, SCNA-WBC, fragment endpoints, fragment lengths, & allelic imbalance | WGBS, targeted sequencing, & WGS | 22 types | 2800: 1628 cancer. 1172 healthy. | Bootstrap analysis, multivariate analysis, & Bayesian likelihood estimation of cTAF | kernel LR & XGBoost | multinomial LR & stacking-ensemble classifier | 34% 98% | 75% |
SYMPLIFY [15] | cfDNA | Blood samples | Prospective observational cohort | Methylation patterns in cfDNA | Targeted methylation-based analysis | 24 types | 5461: 368 cancer. 5093 healthy. | Post-test probabilities, referral pathway analysis, & cross-validation | isotonic regression | Not specified | 66.3% 98·4% | 84.8% |
SPOT-MAS [16] | ctDNA | Plasma | Retrospective case-control | TM (450 regions), GWM, CAN, FLEN, EM | Shallow WGBS | 5 types | 2288: 738 cancer. 1550 healthy. | Wilcoxon Rank-Sum Test, t-Test, Kolmogorov-Smirnov Test, Benjamini-Hochberg Correction, & DeLong’s Test | Single feature: RF, LR, XGBoost Combined feature: LR stacking ensemble | GCNN | 72% 97% | 70% |
Bao et al. [17] | cfDNA | Plasma | Prospective case-control | Fragmentomics: FSC, FSD, EDM, BPM, CNV | WGS at varied depths (down to 1×) | 3 types | 1214: 971 cancer. 243 healthy. | Down-sampling to 1× coverage, Propensity Score Matching, & 10-fold Cross-validation. | Ensemble stacked model including five algorithms: GLM, GBM, RF, DL, and XGBoost | Not specified | 96% 95% | 93% |
Moldovan N. et al. [18] | cfDNA | Plasma | Retrospective & Prospective | Fragmentomics & genomic signatures (trinucleotide end sequences, fragment sizes, SCNAs) | WGS with FrEIA software | 21 types | 629 cancer. 306 healthy. | Mann-Whitney U test, Spearman correlation, & Kaplan-Meier analysis | k-neighbors, LR, RF, & SVM | LR | 72% 95% | (in terms of AUC) 0.96 |
Zhang Z. et al. [19] | cfDNA | Plasma | Retrospective Case-control | Integrated fragmentomic profile and 5hmC | Capture-based low-pass sequencing | 4 types | 396: 311 cancer. 85 healthy. | Cross-validation, Wilcoxon Rank-Sum Test, Mann-Whitney Test, ROC-AUC analysis, Feature importance based on training data | RF | RF | 88.52% 82.35% | 75% |
THUNDER [20] | cfDNA | Plasma | Retrospective & prospective | Methylation (161,984 CpG sites) | ELSA-seq | 6 types | Retrospective (1693): 735 cancer. 958 healthy. Prospective (1010): 505 cancer. 505 healthy. | 10-fold cross-validation, t-SNE analysis, Clopper-Pearson confidence intervals | SVM | Multi-class LR | 69.1% 98.9% | 83.2% |
Hezler et al. [21] | ctDNA | Blood | Retrospective cohort Study | Fragmentation patterns at the first coding exon in targeted cancer gene cfDNA panels | Targeted exon panels | 5 types | GRAIL cohort: n = 198. UW cohort: N = 320. | 10-fold cross-validation | GLMNET | Elastic-net regression | (in terms of accuracy) GRAIL: 76.3% UW: 86.6% | (in terms of AUC) GRAIL: ≥ 0.83 UW: ≥ 0.89 |
PATHFINDER [22] | cfDNA | Blood | Prospective cohort study | Methylation signatures in cfDNA | Targeted methylation sequencing | 16 types | 6621 from seven U.S. health networks. | Two-sided Wilcoxon | Not specified | Not specified | PPV: 38% NPV: 98.6% Specificty: 99.1% | 85% |
31-miRP Signature [23] | cfRNA (miRNA) | Plasma | Retrospective case-control | 31 miRNA Pairs (miRPs) | Microarray analysis | 13 types | 15,832: 8316 cancer. 7516 healthy. | Youden Index & cross-validation | RF | RF | 94.7–100% 92.5–100% | 96.1–99.8% |
thromboSeq [24] | RNA | Platelets | Retrospective case-control | TEP RNA profiles | RNA sequencing | 18 types | 2351: 1628 cancer. 723 healthy. | Iterative ANOVA modeling & cross-validation | Swarm intelligence-enhanced classification | RF | 64% 99% | 85% |
GAGomes [25] | Metabolic | Plasma & Urine | Retrospective & prospective | 14 GAGome features | High-throughput UHPLC-MS/MS | 14 types | 979: 553 cancer. 426 healthy. | Bayesian estimation and equivalence testing, & internal validation using bootstrap analysis | Bayesian multivariable LR | BART | 66% 95% | 89% |
3D-EGN + SERS [26] | Metabolic | Urine | Retrospective case-control | Urinary metabolites | SERS | 4 types | 218: 162 cancer. 56 healthy. | t-test, Pearson correlation, PLSR, & ROC analysis | LR & CNN | CNN | 88–100% 82–100% | 95.6% |
OncoSeek [27] | Protein | Plasma | Retrospective case-control | 7 protein tumor markers | ECLIA analyzer | 9 types | 9382: 1255 cancer. 8127 healthy. | One-at-a-time method sensitivity analysis | GLM with cross-validation | GBM & RF | 52% 93% | 67% |
OneTest [28] | Protien | Serum | Retrospective & prospective real-world (2 hospitals) | 8 tumor markers: AFP, CA15-3, CA-125, PSA, SCC, CEA, CYFsR21-1, & CA19-9 | Automated analyzers (not sequencing) | 28 types | 163,174: 785 cancer. 162,389 healthy. | Effect Size, Chi-Squared Test, Fisher’s Exact Test | LSTM model Single time-point and time-series data | Not specified | 87% 88% | Not specified |
DEcancer [29] | Protein, ctDNA, Epidemiologics | Plasma | Retrospective & prospective | Selected protein panels, DNA omega scores | High-throughput proteomics, DNA analysis | 8 types | Cohen: 1005 cancer. 812 healthy. Blume: 61 cancer. 80 healthy. | Monte Carlo cross-validation & hold-out test set validation | RF, SVM, LR, & MLP | RF | 95% 99% | 81–100% |
Study | Key Findings | Limitations | Future Directions |
---|---|---|---|
CCGA Galleri [11] |
|
|
|
SYMPLIFY [15] |
|
|
|
SPOT-MAS [16] |
|
|
|
Bao et al. [17] |
|
|
|
Moldovan N. et al. [18] |
|
|
|
Zhang Z. et al. [19] |
|
|
|
THUNDER [20] |
|
|
|
Hezler et al. [21] |
|
|
|
PATHFINDER [22] |
|
|
|
31-miRP Signature [23] |
|
|
|
thromboSeq [24] |
|
|
|
GAGomes [25] |
|
|
|
3D-EGN + SERS [26] |
|
|
|
OncoSeek [27] |
|
|
|
OneTest [28] |
|
|
|
DEcancer [29] |
|
|
|
3.6. Zhang Z. et al. [19]
3.7. THUNDER [20]
3.8. K. T. Helzer et al. (GLMNET) [21]
3.9. PATHFINDER [22]
4. Cell-Free RNA Based Tests
4.1. 31-miRP Signature [23]
4.2. thromboSeq [24]
5. Metabolites Based Tests
5.1. GAGomes [25]
5.2. 3D-EGN + SERS [26]
6. Proteins Based Studies
6.1. OncoSeek [27]
6.2. OneTest [28]
6.3. DEcancer [29]
7. Discussion
- Prospective real-world data studies while optimizing irregular and missing data.
- Increase scope of cancer types especially top fatal and low survival rate cancers.
- Generalizability to different populations.
- Improve staging data collection and balance cancer type representation.
- Understanding how these biomarkers are linked to cancer by implementing explainable ML.
- Large scale clinical validation.
- Cohort expansion.
- Exploring additional biomarkers.
- Combine both cfDNA and cfRNA to improve the overall accuracy
- Cost effectiveness analysis.
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Yabroff, K.R.; Bradley, C.J.; Mariotto, A.B.; Brown, M.L.; Feuer, E.J. Estimates and projections of value of life lost from cancer deaths in the United States. JAMA Oncol. 2021, 7, 1446–1454. [Google Scholar] [CrossRef]
- Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): Analysis of individual records for 37,513,025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018, 391, 1023–1075. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.A.; Andrews, K.S.; Brooks, D.; Fedewa, S.A.; Manassaram-Baptiste, D.; Saslow, D.; Brawley, O.W.; Wender, R.C. Cancer screening in the United States, 2018: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin. 2018, 68, 297–316. [Google Scholar] [CrossRef] [PubMed]
- Society, A.C.; Facts, C. Cancer Facts & Figures 2023. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures.html (accessed on 31 August 2024).
- Wan, J.C.M.; Massie, C.; Garcia-Corbacho, J.; Mouliere, F.; Brenton, J.D.; Caldas, C.; Pacey, S.; Baird, R.; Rosenfeld, N. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat. Rev. Cancer 2017, 17, 223–238. [Google Scholar] [CrossRef]
- Heitzer, E.; Haque, I.S.; Roberts, C.E.S.; Speicher, M.R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 2019, 20, 71–88. [Google Scholar] [CrossRef]
- Brito-Rocha, T.; Constâncio, V.; Henrique, R.; Jerónimo, C. Shifting the Cancer Screening Paradigm: The Rising Potential of Blood-Based Multi-Cancer Early Detection Tests. Cells 2023, 12, 935. [Google Scholar] [CrossRef]
- Yang, J.; Nittala, M.R.; Velazquez, A.E.; Buddala, V.; Vijayakumar, S. An Overview of the Use of Precision Population Medicine in Cancer Care: First of a Series. Cureus 2023, 15, e37889. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Lin, W.-Y.; Zhou, C.; Yang, Z.-A.; Kalpana, S.; Lebowitz, M.S. Integrating Artificial Intelligence for Advancing Multiple-Cancer Early Detection via Serum Biomarkers: A Narrative Review. Cancers 2024, 16, 862. [Google Scholar] [CrossRef]
- Jamshidi, A.; Liu, M.C.; Klein, E.A.; Venn, O.; Hubbell, E.; Beausang, J.F.; Gross, S.; Melton, C.; Fields, A.P.; Liu, Q.; et al. Evaluation of cell-free DNA approaches for multi-cancer early detection. Cancer Cell 2022, 40, 1537–1549.e12. [Google Scholar] [CrossRef]
- Liu, M.C.; Oxnard, G.R.; Klein, E.A.; Swanton, C.; Seiden, M.V.; CCGA Consortium. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann. Oncol. 2020, 31, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.; Richards, D.; Cohn, A.; Tummala, M.; Lapham, R.; Cosgrove, D.; Chung, G.; Clement, J.; Gao, J.; Hunkapiller, N.; et al. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Ann. Oncol. 2021, 32, 1167–1177. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Dong, Z.; Hubbell, E.; Kurtzman, K.N.; Oxnard, G.R.; Venn, O.; Melton, C.; Clarke, C.A.; Shaknovich, R.; Ma, T.; et al. Prognostic significance of blood-based multi-cancer detection in plasma cell-free DNA. Clin. Cancer Res. 2021, 27, 4221–4229. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, B.D.; Oke, J.; Virdee, P.S.; Harris, D.A.; O‘Doherty, C.; Park, J.E.; Hamady, Z.; Sehgal, V.; Millar, A.; Medley, L.; et al. Multi-cancer early detection test in symptomatic patients referred for cancer investigation in England and Wales (SYMPLIFY): A large-scale, observational cohort study. Lancet Oncol. 2023, 24, 733–743. [Google Scholar] [CrossRef]
- Nguyen, V.T.C.; Nguyen, T.H.; Doan, N.N.T.; Pham, T.M.Q.; Nguyen, G.T.H.; Vo, D.L.; Phan, T.H.; Jasmine, T.X.; Nguyen, H.T.; Nguyen, T.V.; et al. Multimodal analysis of methylomics and fragmentomics in plasma cell-free DNA for multi-cancer early detection and localization. eLife 2023, 12, RP89083. [Google Scholar] [CrossRef]
- Bao, H.; Wang, Z.; Ma, X.; Guo, W.; Zhang, X.; Tang, W.; Chen, X.; Wang, X.; Chen, Y.; Mo, S.; et al. Letter to the Editor: An ultra-sensitive assay using cell-free DNA fragmentomics for multi-cancer early detection. Mol. Cancer 2022, 21, 129. [Google Scholar] [CrossRef]
- Moldovan, N.; van der Pol, Y.; Ende, T.v.D.; Boers, D.; Verkuijlen, S.; Creemers, A.; Ramaker, J.; Vu, T.; Bootsma, S.; Lenos, K.J.; et al. Multi-modal cell-free DNA genomic and fragmentomic patterns enhance cancer survival and recurrence analysis. Cell Rep. Med. 2024, 5, 101349. [Google Scholar] [CrossRef]
- Zhang, Z.; Pi, X.; Gao, C.; Zhang, J.; Xia, L.; Yan, X.; Hu, X.; Yan, Z.; Zhang, S.; Wei, A.; et al. Integrated fragmentomic profile and 5-Hydroxymethylcytosine of capture-based low-pass sequencing data enables pan-cancer detection via cfDNA. Transl. Oncol. 2023, 34, 101694. [Google Scholar] [CrossRef]
- Gao, Q.; Lin, Y.; Li, B.; Wang, G.; Dong, L.; Shen, B.; Lou, W.; Wu, W.; Ge, D.; Zhu, Q.; et al. Unintrusive multi-cancer detection by circulating cell-free DNA methylation sequencing (THUNDER): Development and independent validation studies. Ann. Oncol. 2023, 34, 486–495. [Google Scholar] [CrossRef]
- Helzer, K.; Sharifi, M.; Sperger, J.; Shi, Y.; Annala, M.; Bootsma, M.; Reese, S.; Taylor, A.; Kaufmann, K.; Krause, H.; et al. Fragmentomic analysis of circulating tumor DNA targeted cancer panels. Ann. Oncol. 2023, 34, 813–825. [Google Scholar] [CrossRef]
- Schrag, D.; Beer, T.M.; McDonnell, C.H.; Nadauld, L.; Dilaveri, C.A.; Reid, R.; Marinac, C.R.; Chung, K.C.; Lopatin, M.; Fung, E.T.; et al. Blood-based tests for multicancer early detection (PATHFINDER): A prospective cohort study. Lancet 2023, 402, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Li, D.; Zhang, C.; Dai, B.; Tang, X.; Liu, J.; Wu, Y.; Wang, X.; Shen, A.; Zhao, J.; et al. A unique circulating microRNA pairs signature serves as a superior tool for early diagnosis of pan-cancer. Cancer Lett. 2024, 588, 216655. [Google Scholar] [CrossRef] [PubMed]
- Veld, S.G.I.; Arkani, M.; Post, E.; Antunes-Ferreira, M.; D’ambrosi, S.; Vessies, D.C.; Vermunt, L.; Vancura, A.; Muller, M.; Niemeijer, A.-L.N.; et al. Detection and localization of early- and late-stage cancers using platelet RNA. Cancer Cell 2022, 40, 999–1009.e6. [Google Scholar] [CrossRef] [PubMed]
- Bratulic, S.; Limeta, A.; Dabestani, S.; Birgisson, H.; Enblad, G.; Stålberg, K.; Hesselager, G.; Häggman, M.; Höglund, M.; Simonson, O.E.; et al. Noninvasive detection of any-stage cancer using free glycosaminoglycans. Proc. Natl. Acad. Sci. USA 2022, 119, e2115328119. [Google Scholar] [CrossRef]
- Al Ja’farawy, M.S.; Linh, V.T.N.; Yang, J.-Y.; Mun, C.; Lee, S.; Park, S.-G.; Han, I.W.; Choi, S.; Lee, M.-Y.; Kim, D.-H.; et al. Whole urine-based multiple cancer diagnosis and metabolite profiling using 3D evolutionary gold nanoarchitecture combined with machine learning-assisted SERS. Sens. Actuators B Chem. 2024, 412, 135828. [Google Scholar] [CrossRef]
- Luan, Y.; Zhong, G.; Li, S.; Wu, W.; Liu, X.; Zhu, D.; Feng, Y.; Zhang, Y.; Duan, C.; Mao, M. A panel of seven protein tumour markers for effective and affordable multi-cancer early detection by artificial intelligence: A large-scale and multicentre case–control study. EClinicalMedicine 2023, 61, 102041. [Google Scholar] [CrossRef]
- Wu, X.; Wang, H.-Y.; Shi, P.; Sun, R.; Wang, X.; Luo, Z.; Zeng, F.; Lebowitz, M.S.; Lin, W.-Y.; Lu, J.-J.; et al. Long short-term memory model—A deep learning approach for medical data with irregularity in cancer predication with tumor markers. Comput. Biol. Med. 2022, 144, 105362. [Google Scholar] [CrossRef]
- Halner, A.; Hankey, L.; Liang, Z.; Pozzetti, F.; Szulc, D.A.; Mi, E.; Liu, G.; Kessler, B.M.; Syed, J.; Liu, P.J. DEcancer: Machine learning framework tailored to liquid biopsy based cancer detection and biomarker signature selection. iScience 2023, 26, 106610. [Google Scholar] [CrossRef]
- Wu, C.; Ma, S. A selective review of robust variable selection with applications in bioinformatics. Brief Bioinform. 2014, 16, 873–883. [Google Scholar] [CrossRef]
Cancer Type | [11] | [12] | [13] | [15] | [16] | [17] | [18] | [19] | [20] | [21] | [22] | [23] | [24] | [25] | [26] | [27] | [28] | [29] |
Lung | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Colorectal | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Pancreatic | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
Liver and Biliary | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
Ovarian | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||
Esophageal | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
Gastrointestinal | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
Breast | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||
Prostate | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||
Bladder | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||
Lymphoma | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||
Head and neck | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||
Uterine | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||
Brain | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||
Kidney | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||
Myeloma | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||
Skin | ✓ | ✓ | ✓ | ✓ | ||||||||||||||
Leukemia | ✓ | ✓ | ✓ | ✓ | ||||||||||||||
Soft Tissue | ✓ | ✓ | ✓ | ✓ | ||||||||||||||
Anus | ✓ | ✓ | ✓ | |||||||||||||||
Cervical | ✓ | ✓ | ✓ | |||||||||||||||
Thyroid | ✓ | ✓ | ||||||||||||||||
Penile | ✓ | |||||||||||||||||
Testicle | ✓ | |||||||||||||||||
Thymoma | ✓ |
Category | Machine Learning Method | Studies |
---|---|---|
Classical Methods | Logistic Regression (LR) | [11,12,16,18,20,23,24,26,28,29] |
Support Vector Machine (SVM) | [11,18,20,23,29] | |
Generalized Linear Model (GLM) | [17,27] | |
Decision Tree (DT) | [28] | |
K-Nearest Neighbor (KNN) | [18,28] | |
Naive Bayes (NB) | [28] | |
Bayesian Logistic Regression (BLR) | [25] | |
Bayesian Additive Regression Trees (BART) | [25] | |
Deep Learning Methods | Long Short-Term Memory (LSTM) | [28] |
Graph Convolutional Neural Networks (GCNN) | [16] | |
Neural Networks | [17] | |
Ensemble Methods | Random Forest (RF) | [11,16,17,18,19,23,24,27,28,29] |
Gradient Boosting Machine (GBM) | [17,27,28] | |
Extreme Gradient Boosting (XGB) | [16,17,23] | |
Ensemble Stacked Model | [16,17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajjar, M.; Albaradei, S.; Aldabbagh, G. Machine Learning Approaches in Multi-Cancer Early Detection. Information 2024, 15, 627. https://doi.org/10.3390/info15100627
Hajjar M, Albaradei S, Aldabbagh G. Machine Learning Approaches in Multi-Cancer Early Detection. Information. 2024; 15(10):627. https://doi.org/10.3390/info15100627
Chicago/Turabian StyleHajjar, Maryam, Somayah Albaradei, and Ghadah Aldabbagh. 2024. "Machine Learning Approaches in Multi-Cancer Early Detection" Information 15, no. 10: 627. https://doi.org/10.3390/info15100627
APA StyleHajjar, M., Albaradei, S., & Aldabbagh, G. (2024). Machine Learning Approaches in Multi-Cancer Early Detection. Information, 15(10), 627. https://doi.org/10.3390/info15100627