Fuzzy Logic Concepts, Developments and Implementation
Abstract
:1. Introduction
2. Fuzzy Logic Concepts
2.1. Membership Functions
2.2. Fuzzy Rules and Operators
2.3. Fuzzy Inference System (Mamdani-Type)
- Rule 1: IF Speed Low AND Distance Large THEN Severity Minor.
- Rule 2: IF Speed High OR Distance Small THEN Severity Major.
- Maximum (max)
- Probabilistic OR (probor)
- Summation (sum, the sum of the rules aggregated sets).
- Centroid (centre of gravity)
- Bisector
- Middle of maximum (the average of the maximum value of the output set),
- Largest of maximum
- Smallest of maximum.
2.4. Adaptive Neuro-Fuzzy Inference System
2.5. Fuzzy c-Means Clustering
- A matrix of N observations in D-dimensional Euclidean space.
- : The number of clusters.
- : The centres of the identified clusters, .
- The objective function is minimised using the generalised form of the least-square errors to partition X into C clusters. The ‖‖ symbol represents any norm indicating the similarity between and .
- m: The fuzziness weighting, a positive value, typically 2.
- : The degree of membership of ith observation to jth cluster. It is in the range 0 (not a member) to 1 (full member). The sum of the degrees membership of the ith observation to all clusters is 1, i.e., and the sum of all degrees of membership in a single cluster is less than N, i.e.,
- C (between 2 and N − 1)
- m (m larger than 0, typically 2.)
- , the algorithm’s iteration termination criteria ()
- , the degrees of membership initially randomised between 0 and 1.
- t, iteration counter, initially t = 1
- Compute the centres of the clusters ()
- Update with
- Determine , i.e., the magnitude of change in the degrees of membership between the current and previous iteration.
- If , the algorithm iteration is terminated (i.e., training is completed) otherwise t is incremented by 1 and the iteration is continuous from step (i).
3. Results
3.1. Fuzzy Logic Developments in Decision Support
3.2. Fuzzy Logic Developments in Industrial Processes and Control
3.3. Fuzzy Logic Developments in Data Communication, Telecommunication and Internet of Things
3.4. Fuzzy Logic Developments in Image and Signal Processing
3.5. Fuzzy Logic Implementation Methods
- Fuzzy Logic Designer’s Main Window: This window allows the overall FIS model to be viewed, its input(s) and output(s) to be named, their ranges specified, and the FIS operational parameters such as implication, aggregation, and defuzzification methods to be selected from a range of possible options.
- Membership Function Editor: This window allows the types and parameters of the input(s) and output(s) fuzzy sets to be defined by selecting amongst 13 different membership functions.
- Rule Editor: This window provides an easy approach to defining the rules associated with the FIS model. The operators ‘AND’ and ‘OR’ are available to construct complex rules. It also allows the rules to have a weighting to control the level of their significance to the FIS output in relation to other rules.
- Rule Viewer: This window allows the user to select the values of the inputs to the FIS and determine and observe the FIS output(s).
- Surface View: This window provides a 3-dimensional surface view relating any two selected inputs to the FIS and one of its outputs.
- A single click on input1 allows its name to be changed to Speed.
- From the window’s Edit menu, followed by Add variables, then Input, a second input can be added to the FIS model, and its name can be changed to Distance.
- By clicking on output1, its name can be changed to Severity.
- The FIS parameters can be set as:
- Operators for the rules: AND (Minimum, min), OR (Maximum, max)
- Implication method: (Minimum, min)
- Aggregation method: Sum
- Defuzzification method: Centroid
- FIS type: Mamdani
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Set Properties
- A, B and C: sets
- : Null set, i.e., a set without any member
- : Universal set (a set that has all elements of other sets including its own elements)
- c: Complement
- : Union
- : Intersection
- ⊆: subset or equal (⊂: subset)
- \: Complement
- Min: minimum
- Max: maximum
Union: | |
Intersection: | |
Complement: | |
Commutativity | |
Associativity | |
Distributivity: | |
Impotency: | |
Identity: | |
Transitivity: | |
Involution: | = |
De Morgan laws: | |
References
- Mossakowski, T.; Goguen, J.; Diaconescu, R.; Tarlecki, A. What Is Logic? Beziau, J.-Y., Ed.; Logica Universalis, Birkhӓuser Verlag: Basel, Switzerland, 2006; pp. 113–135. [Google Scholar]
- Zadah, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Zadah, L.A. Is there a need for fuzzy logic? Inf. Sci. 2008, 178, 2751–2779. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy logic, neural networks, and soft computing. Commun. ACM 1994, 37, 77–84. [Google Scholar] [CrossRef]
- Chen, T.; Karimov, I.; Chen, J.; Constantinovitc, A. Computer and fuzzy theory application: Review in home appliances. J. Fuzzy Ext. Appl. 2020, 1, 133–138. [Google Scholar]
- Matlab, Mathworks®, Version R2024a. Available online: https://uk.mathworks.com/help/ (accessed on 4 October 2024).
- Jain, A.; Sharma, A. Membership function formulation methods for fuzzy logic systems: A comprehensive review. J. Crit. Rev. 2020, 7, 8717–8733. [Google Scholar]
- Pancardo, P.; Hernández-Nolasco, J.A.; Wister, M.A.; Garcia-Constantino, M. Dynamic membership functions for context-based fuzzy systems. IEEE Access 2021, 9, 29665–29676. [Google Scholar] [CrossRef]
- Medasani, S.; Kim, J.; Krishnapuram, R. An overview of membership function generation techniques for pattern recognition. Int. J. Approx. Reason. 1998, 19, 391–417. [Google Scholar] [CrossRef]
- Schwaab, A.A.D.S.; Nassar, S.M.; Filho, P.J.D.F. Automatic methods for generation of type-1 and interval type-2 fuzzy membership functions. J. Comput. Sci. 2015, 11, 976–987. [Google Scholar] [CrossRef]
- Chen, M.-S.; Wang, S.-W. Fuzzy clustering analysis for optimizing fuzzy membership functions. Fuzzy Sets Syst. 1999, 103, 239–254. [Google Scholar] [CrossRef]
- Cheng, H.D.; Chen, J.-R. Automatically determine the membership function based on the maximum entropy principle. Inf. Sci. 1997, 96, 163–182. [Google Scholar] [CrossRef]
- Belyadi, H.; Haghighat, A. Machine Learning Guide for Oil and Gas Using Python: A Step-By-Step Breakdown with Data, Algorithms, Codes, and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Pham, D.T.; Castellani, M. Action aggregation and defuzzification in Mamdani-type fuzzy systems. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2002, 216, 747–759. [Google Scholar] [CrossRef]
- Jager, R.; Verbruggen, H.B.; Bruijn, P.M. The role of defuzzification methods in the application of fuzzy control. IFAC Intell. Compon. Instrum. Control. Appl. 1992, 25, 75–80. [Google Scholar] [CrossRef]
- Jang, J.-S.R. ANFIS adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Gallant, S.I. Perceptron-based learning algorithms. IEEE Trans. Neural Netw. 1990, 1, 179–191. [Google Scholar] [CrossRef]
- Du, K.-L.; Leung, C.-S.; Mow, W.H.; Swamy, M.N.S. Perceptron: Learning, generalization, model selection, fault tolerance, and role in the deep learning era. Mathematics 2022, 10, 4730. [Google Scholar] [CrossRef]
- Kar, S.; Das, S.; Ghosh, P.K. Applications of neuro fuzzy systems: A brief review and future outline. Appl. Soft Comput. 2014, 15, 243–259. [Google Scholar] [CrossRef]
- Lingxiao, L.; Pang, S. An implementation of the adaptive neuro-fuzzy inference system (ANFIS) for odor source localization. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020. [Google Scholar]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Plenum Press: New York, NY, USA, 1981. [Google Scholar]
- Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10, 191–203. [Google Scholar] [CrossRef]
- Kesemen, O.; Tezel, Ö.; Özkul, E. Fuzzy c-means clustering algorithm for directional data (FCM4DD). Expert Syst. Appl. 2016, 58, 76–82. [Google Scholar] [CrossRef]
- Wu, H.; Xu, Z.S. Fuzzy logic in decision support: Methods, applications and future trends. Int. J. Comput. Commun. Control. 2021, 16, 4044. [Google Scholar] [CrossRef]
- Malyszko, M. Fuzzy logic in selection of maritime search and rescue units. Appl. Sci. 2022, 12, 21. [Google Scholar] [CrossRef]
- Cardone, B.; Di Martino, F. A fuzzy rule-based GIS framework to partition an urban system based on characteristics of urban greenery in relation to the urban context. Appl. Sci. 2020, 10, 8781. [Google Scholar] [CrossRef]
- Markiz, N.; Jrade, A. Integrating a fuzzy-logic decision support system with bridge information modelling and cost estimation at conceptual design stage of concrete box-girder bridges. Int. J. Sustain. Built Environ. 2014, 3, 135–152. [Google Scholar] [CrossRef]
- Govindan, A.R.; Li, X. Fuzzy logic-based decision support system for automating ergonomics risk assessments. Int. J. Ind. Ergon. 2023, 96, 103459. [Google Scholar] [CrossRef]
- Improta, G.; Mazzella, V.; Vecchione, D.; Santini, S. Fuzzy logic–based clinical decision support system for the evaluation of renal function in post-transplant patients. J. Eval. Clin. Pract. 2020, 26, 1224–1234. [Google Scholar] [CrossRef]
- Friedlo, G.T.; Schleifer, L.L.F. Fuzzy logic: Application for audit risk and uncertainty. Manag. Audit. J. 1999, 14, 127–135. [Google Scholar] [CrossRef]
- Lashin, M.M.A.; Khan, M.I.; Khedher, N.B.; Eldin, S.M. Optimization of display window design for females’ clothes for fashion stores through artificial intelligence and fuzzy System. Appl. Sci. 2022, 12, 11594. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, Z. Application of artificial intelligence based on the fuzzy control algorithm in enterprise innovation. Heliyon 2024, 10, e28116. [Google Scholar] [CrossRef]
- Puzović, S.; Vasović, V.J.; Milanović, D.D.; Paunović, V. A hybrid fuzzy MCDM approach to open innovation partner evaluation. Mathematics 2023, 11, 3168. [Google Scholar] [CrossRef]
- Sitnicki, M.W.; Balan, V.; Tymchenko, I.; Sviatnenko, V.; Sychova, A. Measuring the commercial potential of new product ideas using fuzzy set theory. Innov. Mark. 2021, 17, 149–163. [Google Scholar] [CrossRef]
- Cerón, A.M.R.; Kafarova, V.; Latorre-Bayona, G. A fuzzy logic decision support system for assessing sustainable alternative for power generation in non-Interconnected areas of Colombia- case of study. Chem. Eng. Trans. 2017, 57, 421–426. [Google Scholar]
- Zarte, M.; Pechmann, A.; Nunes, I.L. Fuzzy inference model for decision Support in sustainable production planning processes—A case study. Sustainability 2021, 13, 1355. [Google Scholar] [CrossRef]
- Kaczorek, M.; Jacyna, M. Fuzzy logic as a decision-making support tool in planning transport development. Arch. Transp. 2022, 61, 51–70. [Google Scholar] [CrossRef]
- Zhang, G.; Band, S.S.; Ardabili, S.; Chau, K.-W.; Mosavi, A. Integration of neural network and fuzzy logic decision making compared with bilayered neural network in the simulation of daily dew point temperature. Eng. Appl. Comput. Fluid Mech. 2022, 16, 713–723. [Google Scholar] [CrossRef]
- Díaz, G.M.; González, R.A.C. Fuzzy logic and decision making applied to customer service optimization. Axioms 2023, 12, 448. [Google Scholar] [CrossRef]
- Ali, N.S.; Mohd-Yusof, K.; Othman, M.F.; Latip, R.A.; Ismail, M.S.N. Adaptive Neuro Fuzzy Inference System (ANFIS) modelling for quality estimation in palm oil refining process. J. Mech. Eng. 2019, 8, 36–47. [Google Scholar]
- Al-Hmouz, A.; Shen, J.; Al-Hmouz, R.; Yan, J. Modeling and simulation of an adaptive neuro-fuzzy inference system (ANFIS) for mobile learning. IEEE Trans. Learn. Technol. 2012, 5, 226–237. [Google Scholar] [CrossRef]
- Vejar-Cortés, A.-P.; García-Díaz, N.; Soriano-Equigua, L.; Ruiz-Tadeo, A.-C.; Álvarez-Flores, J.-L. Determination of crop soil quality for stevia rebaudiana bertoni morita II using a fuzzy logic model and a wireless sensor network. Appl. Sci. 2023, 13, 9507. [Google Scholar] [CrossRef]
- Belman-Flores, J.M.; Rodríguez-Valderrama, D.A.; Ledesma, S.; García-Pabón, J.J.; Hernández, D.; Pardo-Cely, D.M. A review on applications of fuzzy logic control for refrigeration systems. Appl. Sci. 2022, 12, 1302. [Google Scholar] [CrossRef]
- Cioccolanti, L.; De Grandis, S.; Tascioni, R.; Pirro, M.; Freddi, A. Development of a fuzzy logic controller for small-scale solar organic Rankine cycle cogeneration plants. Appl. Sci. 2021, 11, 5491. [Google Scholar] [CrossRef]
- Lin, C.-J.; Lin, C.-H.; Wang, S.-H. Using fuzzy control for feed rate scheduling of computer numerical control machine tools. Appl. Sci. 2021, 11, 4701. [Google Scholar] [CrossRef]
- Arcos-Aviles, D.; Pacheco, D.; Pereira, D.; Garcia-Gutierrez, G.; Carrera, E.V.; Ibarra, A.; Ayala, P.; Martínez, W.; Guinjoan, F. A comparison of fuzzy-based energy management systems adjusted by nature-inspired algorithms. Appl. Sci. 2021, 11, 1663. [Google Scholar] [CrossRef]
- Alawad, H.; An, M.; Kaewunruen, S. Utilizing an adaptive neuro-fuzzy inference system (ANFIS) for overcrowding level risk assessment in railway stations. Appl. Sci. 2020, 10, 5156. [Google Scholar] [CrossRef]
- Babaei, A.; Parker, J.; Moshave, P. Adaptive neuro-fuzzy inference system (ANFIS) integrated with genetic algorithm to optimize piezoelectric cantilever-oscillator-spring energy Harvester: Verification with Closed-Form solution. Comput. Eng. Phys. Model. 2022, 5, 1–22. [Google Scholar]
- Nayagam, O.J.P.; Prasanna, K. Response surface methodology and adaptive neuro-fuzzy inference system for adsorption of reactive orange 16 by hydrochar. Glob. J. Environ. Sci. Manag. 2023, 9, 373–388. [Google Scholar]
- Guerra, M.I.S.; de Araújo, M.F.U.; de Carvalho Neto, J.T.; Vieira, R.G. Survey on adaptative neural fuzzy inference system (ANFIS) architecture applied to photovoltaic systems. Energy Syst. 2024, 15, 505–541. [Google Scholar] [CrossRef]
- Obianyo, J.I.; Udeala, R.C.; Alaneme, G.U. Application of neural networks and neuro-fuzzy models in construction scheduling. Sci. Rep. 2023, 13, 8199. [Google Scholar] [CrossRef]
- Nguyen, P.H.D.; Fayek, A.R.F. Applications of fuzzy hybrid techniques in construction engineering and management research. Autom. Constr. 2022, 134, 104064. [Google Scholar] [CrossRef]
- Yuste, A.J.; Triviño, A.; Trujillo, F.D.; Casilari, E. Using fuzzy logic in hybrid multihop wireless networks. Int. J. Wirel. Mob. Netw. 2010, 2, 96–108. [Google Scholar] [CrossRef]
- Huang, M.-C. A sender-initiated fuzzy logic control method form network load balancing. J. Comput. Commun. 2024, 12, 110–122. [Google Scholar] [CrossRef]
- Yu, J. Application of improved CSA algorithm-based fuzzy logic in computer network control systems. Int. J. Adv. Comput. Sci. Appl. 2023, 15, 1084–1094. [Google Scholar] [CrossRef]
- Salama, A.; Saatchi, R.; Burke, D. Fuzzy logic and regression approaches for adaptive sampling of multimedia traffic in wireless computer networks. Technologies 2018, 6, 24. [Google Scholar] [CrossRef]
- Hwang, W.-S.; Cheng, T.-Y.; Wu, Y.-J.; Cheng, M.-H. Adaptive handover decision using fuzzy logic for 5G ultra-dense networks. Electronics 2022, 11, 3278. [Google Scholar] [CrossRef]
- Silva, S.N.; Goldbarg, M.A.S.d.S.; Silva, L.M.D.d.; Fernandes, M.A.C. Application of fuzzy logic for horizontal scaling in Kubernetes environments within the context of edge computing. Future Internet 2024, 16, 316. [Google Scholar] [CrossRef]
- Salama, A.; Saatchi, R. Evaluation of wirelessly transmitted video quality using a modular fuzzy logic system. Technologies 2019, 7, 67. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, Y.; Lam, H.-K. Security-based fuzzy control for nonlinear networked control systems with DoS attacks via a resilient event-triggered scheme. IEEE Trans. Fuzzy Syst. 2022, 30, 4359–4368. [Google Scholar] [CrossRef]
- de Mello, F.L. A fuzzy model for knowledge base IoT information security evaluation. J. Inf. Secur. Cryptogr. 2018, 5, 20–26. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Dehghantanha, A.; Parizi, R.M.; Srivastava, G.; Karimipour, H. Secure intelligent fuzzy blockchain framework: Effective threat detection in IoT networks. Comput. Ind. 2023, 144, 103801. [Google Scholar] [CrossRef]
- Pérez-Gaspar, M.; Gomez, J.; Bárcenas, E.; Garcia, F. A fuzzy description logic based IoT framework: Formal verification and end user programming. PLoS ONE 2024, 19, e0296655. [Google Scholar] [CrossRef]
- Medina, M.Á.L.; Espinilla, M.; Paggeti, C.; Quero, J.M. Activity recognition for IoT devices using fuzzy spatio-temporal features as environmental sensor fusion. Sensors 2019, 19, 3512. [Google Scholar] [CrossRef]
- Firouzia, R.; Rahmania, R.; Kanter, T. An autonomic IoT gateway for smart home using fuzzy logic reasoner. Procedia Comput. Sci. 2020, 177, 102–111. [Google Scholar] [CrossRef]
- Aalsalem, M.Y. An intelligent adaptive neuro-fuzzy for solving the multipath congestion in Internet of Things. J. Inf. Syst. Eng. Manag. 2023, 8, 23845. [Google Scholar] [CrossRef]
- Sarwar, B.; Bajwa, I.S.; Jamil, N.; Ramzan, S.; Sarwar, N. An intelligent fire warning application using IoT and an adaptive neuro-fuzzy inference system. Sensors 2019, 19, 3150. [Google Scholar] [CrossRef] [PubMed]
- Shabu, S.L.J.; Refonaa, J.; Mallik, S.; Dhamodaran, D.; Grace, L.K.J.; Ksibi, A.; Ayadi, M.; Alshalali, T.A.N. An Improved Adaptive neuro-fuzzy inference framework for lung cancer detection and prediction on Internet of Medical Things platform. Int. J. Comput. Intell. Syst. 2024, 17, 228. [Google Scholar] [CrossRef]
- Gupta, U.K.; Sethi, D.; Goswami, P.K. Adaptive TS-ANFIS neuro-fuzzy controller based single phase shunt active power filter to mitigate sensitive power quality issues in IoT devices. Adv. Electr. Eng. Electron. Energy 2024, 8, 100542. [Google Scholar] [CrossRef]
- Castillo, O.; Sanchez, M.A.; Gonzalez, C.I.; Martinez, G.E. Review of recent type-2 fuzzy image processing applications. Information 2017, 8, 97. [Google Scholar] [CrossRef]
- Bloch, I. Fuzzy sets for image processing and understanding. Elsevier Fuzzy Sets Syst. 2015, 281, 280–291. [Google Scholar] [CrossRef]
- Polo-Rodriguez, A.; Vilchez Chiachio, J.M.; Paggetti, C.; Medina-Quero, J. Ambient sound recognition of daily events by means of convolutional neural networks and fuzzy temporal restrictions. Appl. Sci. 2021, 11, 6978. [Google Scholar] [CrossRef]
- Bloch, I. Fuzzy spatial relationships for image processing and interpretation: A review. Elsevier Image Vis. Comput. 2005, 23, 89–110. [Google Scholar] [CrossRef]
- Van De Ville, D.; Nachtegael, M.; Van der Weken, D.; Kerre, E.E.; Philips, W.; Lemahieu, I. Noise reduction by fuzzy image filtering. IEEE Trans. Fuzzy Syst. 2003, 11, 429–436. [Google Scholar] [CrossRef]
- Sousa, W.P.; Cruz, C.C.P.; LanzillottI, R.S. Fuzzy divergence for lung radiography image enhancement. Trends Comput. Appl. Math. 2023, 24, 699–716. [Google Scholar] [CrossRef]
- Nachar, R.A.; Inaty, E.; Bonnin, P.J.; Alayli, Y. Breaking down Captcha using edge corners and fuzzy logic segmentation/recognition technique. Security Commun. Netw. 2015, 8, 3995–4012. [Google Scholar] [CrossRef]
- Saatchi, R. Single-trial lambda wave identification using a fuzzy inference system and predictive statistical diagnosis. J. Neural Eng. 2004, 1, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Amza, C.G.; Cicic, D.T. Industrial image processing using fuzzy-logic. Procedia Eng. 2015, 100, 492–498. [Google Scholar] [CrossRef]
- Sheikh Hosseini, M.; Zekri, M. Review of medical image classification using the adaptive neuro-fuzzy inference system. J. Med. Signals Sens. 2012, 2, 49–60. [Google Scholar] [CrossRef]
- Krasnov, D.; Davis, D.; Malott, K.; Chen, Y.; Shi, X.; Wong, A. Fuzzy c-means clustering: A review of applications in breast cancer detection. Entropy 2023, 25, 1021. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Zorn, S.R.; Kang, S.; Kiendler-Scharr, A.; Wahner, A.; Mentel, T.F. Application of fuzzy c-means clustering for analysis of chemical ionization mass spectra: Insights into the gas phase chemistry of NO3-initiated oxidation of isoprene. Atmos. Meas. Tech. 2024, 17, 1811–1835. [Google Scholar] [CrossRef]
- HongLei, Y.; JunHuan, P.; BaiRu, X.; DingXuan, Z. Remote sensing classification using fuzzy c-means clustering with spatial constraints based on Markov random field. Eur. J. Remote Sens. 2013, 46, 305–316. [Google Scholar] [CrossRef]
- Li, X.; Lu, X.; Tian, J.; Gao, P.; Kong, H.; Xu, G. Application of fuzzy c-means clustering in data analysis of metabolomics. Anal. Chem. 2009, 81, 4468–4475. [Google Scholar] [CrossRef]
- Ibrahim, A.M. Hardware implementation. In Fuzzy Logic for Embedded Systems Applications; Elsevier (Newnes): Amsterdam, The Netherlands, 2004; Chapter 8. [Google Scholar]
- Yamakawa, T. Electronic circuits dedicated to fuzzy logic controller. Sci. Iran. D 2011, 18, 528–538. [Google Scholar] [CrossRef]
- Barriga, A.; Sánchez-Solanoa, S.; Brox, P.; Cabrera, A.; Baturone, I. Modelling and implementation of fuzzy systems based on VHDL. Int. J. Approx. Reason. 2006, 41, 164–178. [Google Scholar] [CrossRef]
- Spolaor, S.; Fuchs, C.; Cazzaniga, P.; Kaymak, U.; Besozzi, D.; Nobile, M.S. Simpful: A user-friendly Python library for fuzzy logic. Int. J. Comput. Intell. Syst. 2020, 13, 1687–1698. [Google Scholar] [CrossRef]
- Peyravi, H.; Khoei, A.; Hadidi, K. Design of an analog CMOS fuzzy logic controller chip. Fuzzy Sets Syst. 2002, 132, 245–260. [Google Scholar] [CrossRef]
- Azimi, S.M.; Miar-Naimi, H. Designing an analog CMOS fuzzy logic controller for the inverted pendulum with a novel triangular membership function. Sci. Iran. D 2019, 26, 1736–1748. [Google Scholar]
- Gheysari, K.; Mashouf, B. Implementation of CMOS flexible fuzzy logic controller chip in current mode. Fuzzy Sets Syst. 2011, 185, 125–137. [Google Scholar] [CrossRef]
- Sivanandam, S.N.; Sumathi, S.; Deepa, S.N. Introduction to Fuzzy Logic Using Matlab; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Matlab Fuzzy Logic Toolbox User Guide. 2024. Available online: https://uk.mathworks.com/help/fuzzy (accessed on 1 October 2024).
- Das, R.; Sen, S.; Maulik, U. A Survey on fuzzy deep neural networks. ACM Comput. Surv. 2020, 53, 1–25. [Google Scholar] [CrossRef]
- Han, X. Analyzing the impact of deep learning algorithms and fuzzy logic approach for remote English translation. Sci. Rep. 2024, 14, 14556. [Google Scholar] [CrossRef]
- Singh, S.K.; Abolghasemi, V.; Anisi, M.H. Fuzzy logic with deep learning for detection of skin cancer. Appl. Sci. 2023, 13, 8927. [Google Scholar] [CrossRef]
- Kamthan, S.; Singh, H.; Meitzler, T. Hierarchical fuzzy deep learning for image classification. Mem.-Mater. Devices Circuits Syst. 2022, 2, 100016. [Google Scholar] [CrossRef]
- Plerou, A.P.; Vlamou, E.; Papadopoulos, V. Fuzzy Genetic Algorithms: Fuzzy Logic Controllers and Genetics Algorithms. Glob. J. Res. Anal. 2016, 5, 497–500. [Google Scholar]
- Moayedi, H.; Mukhtar, A.; Khedherd, N.B.; Elbadawi, I.; Ben Amara, M.; TT, Q.; Khalilpoor, N. Forecasting of energy-related carbon dioxide emission using ANN combined with hybrid metaheuristic optimization algorithms. Eng. Appl. Comput. Fluid Mech. 2024, 18, 2322509. [Google Scholar] [CrossRef]
- Stirling, J.; Chen, T.; Bucholc, M. Diagnosing Alzheimer’s disease Using a self-organising fuzzy classifier. In Fuzzy Logic Recent Applications and Developments; Carter, J., Chiclana, F., Khuman, A.S., Chen, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 69–82. [Google Scholar]
- Precup, R.-M.; Preitl, S.; Petriu, E.M.; Bojan-Dragos, C.-A.; Szedlak-Stinean, A.-I.; Roman, R.-C.; Hedrea, E.L. Model-based fuzzy control results for networked control systems. Rep. Mech. Eng. 2020, 1, 10–25. [Google Scholar] [CrossRef]
- Abadi, A.S.S.; Hosseinabadi, P.A.; Mekhilef, S. Fuzzy adaptive fixed-time sliding mode control with state observer for a class of high-order mismatched uncertain systems. Int. J. Control. Autom. Syst. 2020, 18, 2492–2508. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Sarker, I.S. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. Spring Nat. Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saatchi, R. Fuzzy Logic Concepts, Developments and Implementation. Information 2024, 15, 656. https://doi.org/10.3390/info15100656
Saatchi R. Fuzzy Logic Concepts, Developments and Implementation. Information. 2024; 15(10):656. https://doi.org/10.3390/info15100656
Chicago/Turabian StyleSaatchi, Reza. 2024. "Fuzzy Logic Concepts, Developments and Implementation" Information 15, no. 10: 656. https://doi.org/10.3390/info15100656
APA StyleSaatchi, R. (2024). Fuzzy Logic Concepts, Developments and Implementation. Information, 15(10), 656. https://doi.org/10.3390/info15100656