Correlations and Fractality in Sentence-Level Sentiment Analysis Based on VADER for Literary Texts
Abstract
:1. Introduction
2. Related Work
3. Input Data
4. Methods
4.1. Vader Sentiment Values
- positive sentiment: compound ,
- neutral sentiment: compound ,
- negative sentiment: compound .
4.2. Fractal Dimension Method and Detrended Fluctuation Analysis
5. Results and Discussion
5.1. Correlations Analysis
5.2. Observations from the Transition Coefficients
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dodds, P.S.; Danforth, C.M. Measuring the Happiness of Large-Scale Written Expression: Songs, Blogs, and Presidents. J. Happiness Stud. 2010, 11, 441–456. [Google Scholar] [CrossRef]
- Dodds, P.S.; Harris, K.D.; Kloumann, I.M.; Bliss, C.A.; Danforth, C.M. Temporal Patterns of Happiness and Information in a Global Social Network: Hedonometrics and Twitter. PLoS ONE 2011, 6, e26752. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, A.; Sobkowicz, P.; Sienkiewicz, J.; Paltoglou, G.; Buckley, K.; Thelwall, M.; Hołyst, J.A. Negative emotions boost user activity at BBC forum. Physica A Stat. Mech. Its Appl. 2011, 390, 2936–2944. [Google Scholar] [CrossRef]
- Chmiel, A.; Sienkiewicz, J.; Thelwall, M.; Paltoglou, G.; Buckley, K.; Kappas, A.; Hołyst, J.A. Collective Emotions Online and Their Influence on Community Life. PLoS ONE 2011, 6, e22207. [Google Scholar] [CrossRef] [PubMed]
- Wankhade, M.; Rao, A.C.S.; Kulkarni, C. A survey on sentiment analysis methods, applications, and challenges. Artif. Intell. Rev. 2022, 55, 5731–5780. [Google Scholar] [CrossRef]
- Calvo, R.A.; Mac Kim, S. Emotions in text: Dimensional and categorical models. Comput. Intell. 2013, 29, 527–543. [Google Scholar] [CrossRef]
- Jain, M.; Jindal, R.; Jain, A. Building Domain-Specific Sentiment Lexicon Using Random Walk-Based Model on Common-Sense Semantic Network. In International Conference on Innovative Computing and Communication; Springer: Singapore, 2023; pp. 193–204. [Google Scholar]
- Cambria, E.; Poria, S.; Hazarika, D.; Kwok, K. SenticNet 5: Discovering conceptual primitives for sentiment analysis by means of context embeddings. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Akhtar, M.S.; Ekbal, A.; Cambria, E. How intense are you? Predicting intensities of emotions and sentiments using stacked ensemble [application notes]. IEEE Comput. Intell. Mag. 2020, 15, 64–75. [Google Scholar] [CrossRef]
- Nandwani, P.; Verma, R. A review on sentiment analysis and emotion detection from text. Soc. Netw. Anal. Min. 2021, 11, 81. [Google Scholar] [CrossRef]
- Xie, H.; Lin, W.; Lin, S.; Wang, J.; Yu, L.C. A multi-dimensional relation model for dimensional sentiment analysis. Inf. Sci. 2021, 579, 832–844. [Google Scholar] [CrossRef]
- Roy, B.; Das, S. Perceptible sentiment analysis of students’ WhatsApp group chats in valence, arousal, and dominance space. Soc. Netw. Anal. Min. 2022, 13, 9. [Google Scholar] [CrossRef]
- Rizhinashvili, D.; Sham, A.H.; Anbarjafari, G. Enhanced speech emotion recognition using averaged valence arousal dominance mapping and deep neural networks. Signal Image Video Process. 2024, 18, 7445–7454. [Google Scholar] [CrossRef]
- Sharma, S.S.; Dutta, G. SentiDraw: Using star ratings of reviews to develop domain specific sentiment lexicon for polarity determination. Inf. Process. Manag. 2021, 58, 102412. [Google Scholar] [CrossRef]
- Baldwin, J.; Brunsdon, T.; Gaudoin, J.; Hirsch, L. Comparative Analysis of Lexicon-Based Sentiment Analysis Methods. 2023. Available online: https://ssrn.com/abstract=4531226 (accessed on 27 May 2024).
- Oh, N. sentibank: A Unified Resource of Sentiment Lexicons and Dictionaries. Proc. Int. AAAI Conf. Web Soc. Media 2024, 18, 2003–2013. [Google Scholar] [CrossRef]
- Ophir, Y.; Walter, D. Computational Sentiment Analysis. In Emotions in the Digital World: Exploring Affective Experience and Expression in Online Interactions; Oxford University Press: Oxford, UK, 2023; p. 114. [Google Scholar]
- Taboada, M.; Brooke, J.; Tofiloski, M.; Voll, K.; Stede, M. Lexicon-based methods for sentiment analysis. Comput. Linguist. 2011, 37, 267–307. [Google Scholar] [CrossRef]
- Deng, S.; Sinha, A.P.; Zhao, H. Adapting sentiment lexicons to domain-specific social media texts. Decis. Support Syst. 2017, 94, 65–76. [Google Scholar] [CrossRef]
- Itani, M.; Roast, C.; Al-Khayatt, S. Developing resources for sentiment analysis of informal Arabic text in social media. Procedia Comput. Sci. 2017, 117, 129–136. [Google Scholar] [CrossRef]
- Thelwall, M. The Heart and Soul of the Web? Sentiment Strength Detection in the Social Web with SentiStrength. In Cyberemotions. Understanding Complex Systems; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Sebastiani, F.; Esuli, A. Sentiwordnet: A publicly available lexical resource for opinion mining. In Proceedings of the 5th International Conference on Language Resources and Evaluation, Genoa, Italy, 22–28 May 2006; European Language Resources Association (ELRA): Genoa, Italy, 2006; pp. 417–422. [Google Scholar]
- Khan, F.H.; Qamar, U.; Bashir, S. SentiMI: Introducing point-wise mutual information with SentiWordNet to improve sentiment polarity detection. Appl. Soft Comput. 2016, 39, 140–153. [Google Scholar] [CrossRef]
- Warriner, A.B.; Kuperman, V.; Brysbaert, M. Norms of valence, arousal, and dominance for 13,915 English lemmas. Behav. Res. Methods 2013, 45, 1191–1207. [Google Scholar] [CrossRef]
- Lee, L.H.; Li, J.H.; Yu, L.C. Chinese EmoBank: Building Valence-Arousal Resources for Dimensional Sentiment Analysis. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 2022, 21, 65. [Google Scholar] [CrossRef]
- Bradley, M.; Lang, P.J. Affective Norms for English Words (ANEW): Instruction Manual and Affective Ratings; Technical Report C-1; The Center for Research in Psychophysiology, University of Florida: Gainesville, FL, USA, 1999; Available online: https://pdodds.w3.uvm.edu/teaching/courses/2009-08UVM-300/docs/others/everything/bradley1999a.pdf (accessed on 21 October 2024).
- Nielsen, F.Å. A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. arXiv 2011, arXiv:1103.2903. [Google Scholar]
- Ribeiro, F.N.; Araújo, M.; Gonçalves, P.; Gonçalves, M.A.; Benevenuto, F. SentiBench—A benchmark comparison of state-of-the-practice sentiment analysis methods. EPJ Data Sci. 2016, 5, 23. [Google Scholar] [CrossRef]
- Hutto, C.J.; Gilbert, E.E. VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text. Proc. Int. AAAI Conf. Web Soc. Media 2014, 8, 216–225. [Google Scholar] [CrossRef]
- Garcia, D.; Garas, A.; Schweitzer, F. Positive words carry less information than negative words. EPJ Data Sci. 2012, 1, 3. [Google Scholar] [CrossRef]
- Kloumann, I.M.; Danforth, C.M.; Harris, K.D.; Bliss, C.A.; Dodds, P.S. Positivity of the English Language. PLoS ONE 2012, 7, e29484. [Google Scholar] [CrossRef]
- Yuri, B.; Pascale, F. Sentiment Analysis for Literary Texts: Hemingway as a Case-study. J. Data Min. Digit. Humanit. 2024, NLP4DH. [Google Scholar] [CrossRef]
- Yeruva, V.K.; Chandrashekar, M.; Lee, Y.; Rydberg-Cox, J.; Blanton, V.; Oyler, N.A. Interpretation of sentiment analysis in aeschylus’s Greek tragedy. In Proceedings of the 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature, Barcelona, Spain, 12 December 2020; pp. 138–146. [Google Scholar]
- Vinodini, S. Analyzing Sentiments in Paulo Coelho’s Literary Works Using VADER Sentiment Analysis. In Proceedings of the 2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), Chennai, India, 14–15 December 2023; pp. 1–6. [Google Scholar]
- Ausloos, M. Generalized Hurst exponent and multifractal function of original and translated texts mapped into frequency and length time series. Phys. Rev. E 2012, 86, 031108. [Google Scholar] [CrossRef]
- Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J. Scale and time dependence of serial correlations in word-length time series of written texts. Physica A Stat. Mech. Its Appl. 2014, 414, 378–386. [Google Scholar] [CrossRef]
- Guzmán-Vargas, L.; Obregón-Quintana, B.; Aguilar-Velázquez, D.; Hernández-Pérez, R.; Liebovitch, L.S. Word-Length Correlations and Memory in Large Texts: A Visibility Network Analysis. Entropy 2015, 17, 7798–7810. [Google Scholar] [CrossRef]
- Drożdż, S.; Oświȩcimka, P.; Kulig, A.; Kwapień, J.; Bazarnik, K.; Grabska-Gradzińska, I.; Rybicki, J.; Stanuszek, M. Quantifying origin and character of long-range correlations in narrative texts. Inf. Sci. 2016, 331, 32–44. [Google Scholar] [CrossRef]
- Gromov, V.A.; Dang, Q.N. Semantic and sentiment trajectories of literary masterpieces. Chaos Solitons Fractals 2023, 175, 113934. [Google Scholar] [CrossRef]
- Ausloos, M. Measuring complexity with multifractals in texts. Translation effects. Chaos Solitons Fractals 2012, 45, 1349–1357. [Google Scholar] [CrossRef]
- Carrizales-Velazquez, C.; Donner, R.V.; Guzmán-Vargas, L. Generalization of Higuchi’s fractal dimension for multifractal analysis of time series with limited length. Nonlinear Dyn. 2022, 108, 417–431. [Google Scholar] [CrossRef]
- Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Physica D Nonlinear Phenom. 1988, 31, 277–283. [Google Scholar] [CrossRef]
- Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685–1689. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Griffths, T.L. Rethinking language: How probabilities shape the words we use. Proc. Natl. Acad. Sci. USA 2011, 108, 3825–3826. [Google Scholar] [CrossRef]
- Markov, A.A. An Example of Statistical Investigation of the Text Eugene Onegin Concerning the Connection of Samples in Chains. Sci. Context 2006, 19, 591–600. [Google Scholar] [CrossRef]
- Malamud, B.D.; Turcotte, D.L. Self-affine time series: Measures of weak and strong persistence. J. Stat. Plan. Inference 1999, 80, 173–196. [Google Scholar] [CrossRef]
- Peng, C.K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Long-range anti-correlations and non- Gaussian Behavior of the heartbeat. Phys. Rev. Lett. 1995, 70, 1343–1346. [Google Scholar] [CrossRef] [PubMed]
- Rangarajan, G.; Ding, M. Integrated approach to the assessment of long range correlation in time series data. Phys. Rev. E 2000, 61, 4991–5001. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T. Relationship between the fractal dimension and the power law index for a time series: A numerical investigation. Physica D Nonlinear Phenom. 1990, 46, 254–264. [Google Scholar] [CrossRef]
- Guzmán-Vargas, L.; Angulo-Brown, F. Simple model of the aging effect in heart interbeat time series. Phys. Rev. E 2003, 67, 052901. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.K.; Mietus, J.; Hausdorff, J.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of Scaling Exponents and Crossover Phenomena in Nonstationary Heartbeat Time Series. Chaos 1995, 5, 82–87. [Google Scholar] [CrossRef]
- Telesca, L.; Lapenna, V.; Macchiato, M. Multifractal fluctuations in seismic interspike series. Physica A Stat. Mech. Its Appl. 2005, 354, 629–640. [Google Scholar] [CrossRef]
- Bashan, A.; Bartsch, R.; Kantelhardt, J.W.; Havlin, S. Comparison of detrending methods for fluctuation analysis. Physica A Stat. Mech. Its Appl. 2008, 387, 5080–5090. [Google Scholar] [CrossRef]
- Feder, J. Fractals; Springer: New York, USA, 1988. [Google Scholar]
- Dodds, P.S.; Clark, E.M.; Desu, S.; Frank, M.R.; Reagan, A.J.; Williams, J.R.; Mitchell, L.; Harris, K.D.; Kloumann, I.M.; Bagrow, J.P.; et al. Human language reveals a universal positivity bias. Proc. Natl. Acad. Sci. USA 2015, 112, 2389–2394. [Google Scholar] [CrossRef]
- Yang, T.; Gu, C.; Yang, H. Long-range correlations in sentence series from a story of the stone. PLoS ONE 2016, 11, e0162423. [Google Scholar] [CrossRef]
- Bizzoni, Y.; Moreira, P.; Thomsen, M.R.; Nielbo, K.L. The fractality of sentiment arcs for literary quality assessment: The case of Nobel laureates. In Proceedings of the 2nd International Workshop on Natural Language Processing for Digital Humanities, Taipei, Taiwan, 20 November 2022; pp. 31–41. [Google Scholar]
- Yamasaki, K.; Muchnik, L.; Havlin, S.; Bunde, A.; Stanley, H.E. Scaling and memory in volatility return intervals in financial markets. Proc. Natl. Acad. Sci. USA 2005, 102, 9424–9428. [Google Scholar] [CrossRef]
- Hernández-Pérez, R.; Guzmán-Vargas, L.; Reyes-Ramirez, I.; Angulo-Brown, F. Evolution in time and scales of the stability of heart interbeat rate. Europhys. Lett. 2011, 92, 68006. [Google Scholar] [CrossRef]
- Reyes-Ramírez, I.; Guzmán-Vargas, L. Scaling properties of excursions in heartbeat dynamics. Europhys. Lett. 2010, 89, 38008. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
Initial State | First Most Likely Transition | Second | Third |
---|---|---|---|
positive | positive | neutral | negative |
neutral | neutral | positive | negative |
negative | negative | positive | neutral |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Pérez, R.; Lara-Martínez, P.; Obregón-Quintana, B.; Liebovitch, L.S.; Guzmán-Vargas, L. Correlations and Fractality in Sentence-Level Sentiment Analysis Based on VADER for Literary Texts. Information 2024, 15, 698. https://doi.org/10.3390/info15110698
Hernández-Pérez R, Lara-Martínez P, Obregón-Quintana B, Liebovitch LS, Guzmán-Vargas L. Correlations and Fractality in Sentence-Level Sentiment Analysis Based on VADER for Literary Texts. Information. 2024; 15(11):698. https://doi.org/10.3390/info15110698
Chicago/Turabian StyleHernández-Pérez, Ricardo, Pablo Lara-Martínez, Bibiana Obregón-Quintana, Larry S. Liebovitch, and Lev Guzmán-Vargas. 2024. "Correlations and Fractality in Sentence-Level Sentiment Analysis Based on VADER for Literary Texts" Information 15, no. 11: 698. https://doi.org/10.3390/info15110698
APA StyleHernández-Pérez, R., Lara-Martínez, P., Obregón-Quintana, B., Liebovitch, L. S., & Guzmán-Vargas, L. (2024). Correlations and Fractality in Sentence-Level Sentiment Analysis Based on VADER for Literary Texts. Information, 15(11), 698. https://doi.org/10.3390/info15110698