Best IDEAS: Special Issue of the International Database Engineered Applications Symposium
1. Introduction
2. Federated Learning and Learning Instance Selection
3. Data Analysis and Data Mining
4. Temporal Logic and Verification
5. Prediction, Detection and Imputation
Acknowledgments
Conflicts of Interest
References
- Casamayor Pujol, V.; Morichetta, A.; Murturi, I.; Donta, P.K.; Dustdar, S. Fundamental Research Challenges for Distributed Computing Continuum Systems. Information 2023, 14, 198. [Google Scholar] [CrossRef]
- Revesz, P.Z.; Triplet, T. Classification integration and reclassification using constraint databases. Artif. Intell. Med. 2010, 49, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Kanellakis, P.C.; Kuper, G.M.; Revesz, P.Z. Constraint query languages. J. Comput. Syst. Sci. 1995, 51, 26–52. [Google Scholar] [CrossRef]
- Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMahan, H.B.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical secure aggregation for privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Association for Computing Machinery, New York, NY, USA, 30 October–3 November 2017; pp. 1175–1191. [Google Scholar]
- Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings, R.; et al. Advances and open problems in federated learning. Found. Trends Mach. Learn. 2021, 14, 1–210. [Google Scholar] [CrossRef]
- Sheth, A.P.; Larson, J.A. Federated database systems for managing distributed, heterogeneous, and autonomous databases. ACM Comput. Surv. 1990, 22, 183–236. [Google Scholar] [CrossRef]
- Abbasi Tadi, A.; Dayal, S.; Alhadidi, A.; Mohammed, N. Comparative Analysis of Membership Inference Attacks in Federated and Centralized Learning. Information 2023, 14, 620. [Google Scholar] [CrossRef]
- Enguix, F.; Carrascosa, C.; Rincon, J. Exploring Federated Learning Tendencies Using a Semantic Keyword Clustering Approach. Information 2024, 15, 379. [Google Scholar] [CrossRef]
- Filippakis, P.; Ougiaroglou, S.; Evangelidis, G. Prototype Selection for Multilabel Instance-Based Learning. Information 2023, 14, 572. [Google Scholar] [CrossRef]
- Daggumati, S.; Revesz, P.Z. Convolutional Neural Networks Analysis Reveals Three Possible Sources of Bronze Age Writings between Greece and India. Information 2023, 14, 227. [Google Scholar] [CrossRef]
- Revesz, P.Z. Establishing the West-Ugric Language Family with Minoan, Hattic and Hungarian by a Decipherment of Linear A. WSEAS Trans. Inf. Sci. Appl. 2017, 14, 306–335. [Google Scholar]
- Revesz, P.Z. A Translation of the Arkalochori Axe and the Malia Altar Stone. WSEAS Trans. Inf. Sci. Appl. 2017, 14, 124–133. [Google Scholar]
- Hughes-Castleberry, K. Could AI Language Models Like ChatGPT Unlock Mysterious Ancient Texts? Discover Magazine. 11 April 2023. Available online: https://www.discovermagazine.com/technology/could-ai-language-models-like-chatgpt-unlock-mysterious-ancient-texts (accessed on 15 April 2023).
- Revesz, P.Z. Archaeogenetic Data Mining Supports a Uralic–Minoan Homeland in the Danube Basin. Information 2024, 15, 646. [Google Scholar] [CrossRef]
- Nepal, A.; Perono Cacciafoco, F. Minoan Cryptanalysis: Computational Approaches to Deciphering Linear A and Assessing its Connections with Language Families from the Mediterranean and the Black Sea Areas. Information 2024, 15, 73. [Google Scholar] [CrossRef]
- Bergami, G.; Appleby, S.; Morgan, G. Quickening Data-Aware Conformance Checking through Temporal Algebras. Information 2023, 14, 173. [Google Scholar] [CrossRef]
- Bergami, G. Streamlining Temporal Formal Verification over Columnar Databases. Information 2024, 15, 34. [Google Scholar] [CrossRef]
- Ajayi, J.; Xu, Y.; Li, L.; Wang, K. Enhancing Flight Delay Predictions Using Network Centrality Measures. Information 2024, 15, 559. [Google Scholar] [CrossRef]
- Alfian, M.; Yuhana, U.L.; Pardede, E.; Bimantoro, A.N.P. Correction of Threshold Determination in Rapid-Guessing Behaviour Detection. Information 2023, 14, 422. [Google Scholar] [CrossRef]
- Greco, S.; Molinaro, C.; Trubitsyna, I. Algorithms for computing approximate certain answers over incomplete databases. In Proceedings of the 22nd International Database Engineering and Applications Symposium, Villa San Giovanni, Italy, 18–20 June 2018; ACM Press: New York, NY, USA, 2018; pp. 1–4. [Google Scholar]
- Shahbazian, R.; Trubitsyna, I. DEGAIN: Generative-Adversarial-Network-Based Missing Data Imputation. Information 2022, 13, 575. [Google Scholar] [CrossRef]
- Yoon, J.; Jordon, J.; Schaar, M. GAIN: Missing data imputation using generative adversarial nets. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5689–5698. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revesz, P.Z. Best IDEAS: Special Issue of the International Database Engineered Applications Symposium. Information 2024, 15, 713. https://doi.org/10.3390/info15110713
Revesz PZ. Best IDEAS: Special Issue of the International Database Engineered Applications Symposium. Information. 2024; 15(11):713. https://doi.org/10.3390/info15110713
Chicago/Turabian StyleRevesz, Peter Z. 2024. "Best IDEAS: Special Issue of the International Database Engineered Applications Symposium" Information 15, no. 11: 713. https://doi.org/10.3390/info15110713
APA StyleRevesz, P. Z. (2024). Best IDEAS: Special Issue of the International Database Engineered Applications Symposium. Information, 15(11), 713. https://doi.org/10.3390/info15110713