Accurately Identifying Sound vs. Rotten Cranberries Using Convolutional Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Benchmark Dataset
2.3. Classifier
2.4. Evaluation Methods
2.5. Evaluation Metrix
3. Results
Comparison with Different Machine Learning Models
4. Discussion
5. Practical Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joanne, L. Slavin, Beate Lloyd, Health Benefits of Fruits and Vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef]
- Pappas, E.; Schaich, K.M. Phytochemicals of cranberries and cranberry products: Characterization, potential health effects, and processing stability. Crit. Rev. Food Sci. Nutr. 2009, 49, 741–781. [Google Scholar] [CrossRef] [PubMed]
- Côté, J.; Caillet, S.; Doyon, G.; Sylvain, J.-F.; Lacroix, M. Bioactive compounds in cranberries and their biological properties. Crit. Rev. Food Sci. Nutr. 2010, 50, 666–679. [Google Scholar] [CrossRef] [PubMed]
- Esquivel-Chirino, C.; Bolaños-Carrillo, M.A.; Carmona-Ruiz, D.; Lopéz-Macay, A.; Hernández-Sánchez, F.; Montés-Sánchez, D.; Escuadra-Landeros, M.; Gaitán-Cepeda, L.A.; Maldonado-Frías, S.; Yáñez-Ocampo, B.R.; et al. The protective role of cranberries and blueberries in oral cancer. Plants 2023, 12, 2330. [Google Scholar] [CrossRef]
- Avula, B.; Katragunta, K.; Osman, A.G.; Ali, Z.; John Adams, S.; Chittiboyina, A.G.; Khan, I.A. Advances in the chemistry, analysis and adulteration of anthocyanin rich-berries and fruits: 2000–2022. Molecules 2023, 28, 560. [Google Scholar] [CrossRef]
- Chandler, F.B.; Wilcox, R.B.; Bain, H.F.; Bergman, H.F.; Dermen, H. Cranberry breeding investigation of the US Dept. of Agriculture. Cranberries 1947, 12, 6–9. [Google Scholar]
- Chandler, F.B.; Bain, H.F.; Bergman, H.F. The Beckwith, the Stevens and the Wilcox cranberry varieties. Cranberries 1950, 14, 6–7. [Google Scholar]
- Oudemans, P.V.; Caruso, F.L.; Stretch, A.W. Cranberry fruit rot in the Northeast: A complex disease. Plant Dis. 1998, 82, 1176–1184. [Google Scholar] [CrossRef]
- Gallardo, R.K.; Klingthong, P.; Zhang, Q.; Polashock, J.; Atucha, A.; Zalapa, J.; Rodriguez-Saona, C.; Vorsa, N.; Iorizzo, M. Breeding trait priorities of the cranberry industry in the United States and Canada. HortScience 2018, 53, 1467–1474. [Google Scholar] [CrossRef]
- Johnson-Cicalese, J.; Polashock, J.J.; Honig, J.A.; Vaiciunas, J.; Ward, D.L.; Vorsa, N. Heritability of fruit rot resistance in American cranberry. J. Am. Soc. Hortic. Sci. 2015, 140, 233–242. [Google Scholar] [CrossRef]
- National Archives and Records Administration. Code of Federal Regulations. Federal Register. Available online: https://www.ecfr.gov/current/title-7/subtitle-B/chapter-I/subchapter-M/part-205/subpart-G (accessed on 1 November 2024).
- Christina. New England Cranberry Bog. Daydream Tourist. 2012. Available online: https://daydreamtourist.com/2012/11/20/new-england-cranberry-bog/ (accessed on 1 November 2024).
- El-Bendary, N.; El Hariri, E.; Hassanien, A.E.; Badr, A. Using machine learning techniques for evaluating tomato ripeness. Expert Syst. Appl. 2015, 42, 1892–1905. [Google Scholar] [CrossRef]
- Elhariri, E.; El-Bendary, N.; Fouad, M.M.; Platoš, J.; Hassanien, A.E.; Hussein, A.M. Multi-class svm based classification approach for tomato ripeness. In Innovations in Bio-Inspired Computing and Applications; Springer: Berlin/Heidelberg, Germany, 2014; pp. 175–186. [Google Scholar]
- Nguyen, C.; Sagan, V.; Maimaitiyiming, M.; Maimaitijiang, M.; Bhadra, S.; Kwasniewski, M.T. Early detection of plant viral disease using hyperspectral imaging and deep learning. Sensors 2021, 21, 742. [Google Scholar] [CrossRef] [PubMed]
- Giraudo, A.; Calvini, R.; Orlandi, G.; Ulrici, A.; Geobaldo, F.; Savorani, F. Development of an automated method for the identification of defective hazelnuts based on RGB image analysis and colourgrams. Food Control 2018, 94, 233–240. [Google Scholar] [CrossRef]
- Liang, X.; Jia, X.; Huang, W.; He, X.; Li, L.; Fan, S.; Li, J.; Zhao, C.; Zhang, C. Real-Time grading of defect apples using semantic segmentation combination with a pruned YOLO V4 network. Foods 2022, 11, 3150. [Google Scholar] [CrossRef]
- Foong, C.C.; Meng, G.K.; Tze, L.L. Convolutional neural network based rotten fruit detection using ResNet50. In Proceedings of the 2021 IEEE 12th Control and System Graduate Research Colloquium (ICSGRC), Shah Alam, Malaysia, 7 August 2021; pp. 75–80. [Google Scholar] [CrossRef]
- Parashar, N.; Mishra, A.; Mishra, Y. Fruits classification and grading using VGG-16 Approach. In Proceedings of International Conference on Communication and Artificial Intelligence; Lecture Notes in Networks and Systems; Goyal, V., Gupta, M., Mirjalili, S., Trivedi, A., Eds.; Springer: Singapore, 2022; Volume 435. [Google Scholar] [CrossRef]
- Cubero, S.; Aleixos, N.; Moltó, E.; Gómez-Sanchis, J.; Blasco, J. Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food Bioprocess Technol. 2011, 4, 487–504. [Google Scholar] [CrossRef]
- Wu, D.; Sun, D.-W. Colour measurements by computer vision for food quality control—A review. Trends Food Sci. Technol. 2013, 29, 5–20. [Google Scholar] [CrossRef]
- Prats-Montalbán, J.M.; de Juan, A.; Ferrer, A. Multivariate image analysis: A review with applications. Chemom. Intell. Lab. Syst. 2011, 107, 1–23. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Tyagi, D.; Duraisamy, P.; Sandhan, T. Non-destructive method for assessing fruit quality using modified depthwise separable convolutions on hyperspectral images. In Sensing for Agriculture and Food Quality and Safety XVI; SPIE: Bellingham, WA, USA, 2024; Volume 13060, pp. 37–43. [Google Scholar]
- Kurita, T.; Otsu, N.; Abdelmalek, N. Maximum likelihood thresholding based on population mixture models. Pattern Recognit. 1992, 25, 1231–1240. [Google Scholar] [CrossRef]
- Xue, J.-H.; Titterington, D.M. t-Tests, F-Tests and Otsu’s Methods for Image Thresholding. IEEE Trans. Image Process. 2011, 20, 2392–2396. [Google Scholar] [CrossRef] [PubMed]
- Liao, P.-S. A fast algorithm for multilevel thresholding. J. Inf. Sci. Eng. 2001, 17, 713–727. [Google Scholar] [CrossRef]
- Sirisha, P.; Raju, C.N.; Reddy, R.P.K. An efficient fuzzy technique for detection of brain tumor. Int. J. Comput. Technol. 2013, 8, 813–819. [Google Scholar] [CrossRef]
- Bindu, C.H.; Prasad, K.S. An efficient medical image segmentation using conventional OTSU method. Int. J. Adv. Sci. Technol. 2012, 38, 67–74. [Google Scholar]
- Gupta, P.; Malik, V.; Gandhi, M. Implementation of multilevel threshold method for digital images used in medical image processing. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2012, 2, 2. [Google Scholar]
- Sezgin, M.; Sankur, B. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 2004, 13, 146–165. [Google Scholar] [CrossRef]
- Pulli, K.; Baksheev, A.; Kornyakov, K.; Eruhimov, V. Realtime Computer Vision with OpenCV. Queue 2012, 10, 40–56. [Google Scholar] [CrossRef]
- Valueva, M.V.; Nagornov, N.N.; Lyakhov, P.A.; Valuev, G.V.; Chervyakov, N.I. Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Math. Comput. Simul. 2020, 177, 232–243. [Google Scholar] [CrossRef]
- Wallach, I.; Dzamba, M.; Heifets, A. AtomNet: A deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv 2015, arXiv:1510.02855. [Google Scholar]
- Manavi, F.; Sharma, A.; Sharma, R.; Tsunoda, T.; Shatabda, S.; Dehzangi, I. CNN-Pred: Prediction of single-stranded and double-stranded DNA-binding protein using convolutional neural networks. Gene 2023, 853, 147045. [Google Scholar] [CrossRef]
- Azim, S.M.; Sharma, A.; Noshadi, I.; Shatabda, S.; Dehzangi, I. A convolutional neural network based tool for predicting protein AMPylation sites from binary profile representation. Sci. Rep. 2022, 12, 11451. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Min, S.; Lee, B.; Yoon, S. Deep learning in bioinformatics. Brief. Bioinform. 2017, 18, 851–869. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Yarotsky, D. Error bounds for approximations with deep relu networks. Neural Netw. 2017, 94, 103–114. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, Y. Convergence analysis of two-layer neural networks with relu activation. arXiv 2017, arXiv:1705.09886. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Rubinstein, R.Y.; Kroese, D.P. The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning; Springer: New York, NY, USA, 2004; ISBN 978-0-387-21240-1. [Google Scholar]
- Stone, M. Cross-Validatory Choice and Assessment of Statistical Predictions. J. R. Stat. Soc. Ser. B (Methodol.) 1974, 36, 111–147. [Google Scholar] [CrossRef]
- James, G. An Introduction to Statistical Learning: With Applications in R; Springer: Berlin/Heidelberg, Germany, 2013; p. 176. ISBN 978-1461471370. [Google Scholar]
- Brownlee, J. What is the Difference Between Test and Validation Datasets? Machine Learning Mastery, 14 August 2020. [Google Scholar]
- Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta (BBA) Protein Struct. 1975, 405, 442–451. [Google Scholar] [CrossRef]
- Çetin, N.; Karaman, K.; Kavuncuoğlu, E.; Yıldırım, B.; Jahanbakhshi, A. Using hyperspectral imaging technology and machine learning algorithms for assessing internal quality parameters of apple fruits. Chemom. Intell. Lab. Syst. 2022, 230, 104650. [Google Scholar] [CrossRef]
- Vairavan, C.; Kamble, B.M.; Durgude, A.G.; Ingle, S.R.; Pugazenthi, K. Hyperspectral Imaging of Soil and Crop: A Review. J. Exp. Agric. Int. 2024, 46, 48–61. [Google Scholar] [CrossRef]
Model | Train (5-Fold CV on Training) | Test (Independent Dataset) | ||||||
---|---|---|---|---|---|---|---|---|
Acc | Sn | Sp | MCC | Acc | Sn | Sp | MCC | |
CARP | 97.4 | 97.9 | 97.2 | 0.92 | 94.8 | 95.4 | 92.7 | 0.86 |
SVM | 86.5 | 95.8 | 85.4 | 0.59 | 86.1 | 92.6 | 85.2 | 0.59 |
KNN | 94.3 | 98.1 | 93.4 | 0.84 | 95.7 | 94.1 | 96.1 | 0.87 |
DT | 90.1 | 79.2 | 93.3 | 0.72 | 93.5 | 83.3 | 97.1 | 0.83 |
LR | 92.3 | 87.7 | 93.4 | 0.77 | 94.7 | 89.1 | 96.6 | 0.85 |
NB | 89.1 | 73.1 | 94.9 | 0.71 | 92.6 | 81.6 | 96.5 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azim, S.M.; Spadaro, A.; Kawash, J.; Polashock, J.; Dehzangi, I. Accurately Identifying Sound vs. Rotten Cranberries Using Convolutional Neural Network. Information 2024, 15, 731. https://doi.org/10.3390/info15110731
Azim SM, Spadaro A, Kawash J, Polashock J, Dehzangi I. Accurately Identifying Sound vs. Rotten Cranberries Using Convolutional Neural Network. Information. 2024; 15(11):731. https://doi.org/10.3390/info15110731
Chicago/Turabian StyleAzim, Sayed Mehedi, Austin Spadaro, Joseph Kawash, James Polashock, and Iman Dehzangi. 2024. "Accurately Identifying Sound vs. Rotten Cranberries Using Convolutional Neural Network" Information 15, no. 11: 731. https://doi.org/10.3390/info15110731
APA StyleAzim, S. M., Spadaro, A., Kawash, J., Polashock, J., & Dehzangi, I. (2024). Accurately Identifying Sound vs. Rotten Cranberries Using Convolutional Neural Network. Information, 15(11), 731. https://doi.org/10.3390/info15110731