Battery Remaining Useful Life Prediction Using Machine Learning Models: A Comparative Study
Abstract
:1. Introduction
1.1. Literature Review
1.2. Novelty and Contribution
- Proposing an MFMT feature mapping for the developed ML models to improve capacity fade prediction for all cycles.
- Utilizing two distinct battery datasets with different feature extractions for training and testing the proposed three case studies.
- Performing hyperparameter tuning for the performance improvement of XGBOOST and LightGBM models.
- Providing an in-depth performance assessment of the developed ML models along with a comparison with other relevant works.
1.3. Paper Organization
2. Proposed Comparative Analysis Methodology
2.1. XGboost Model
2.2. LightGBM Model
2.3. LSTM and Attention-LSTM Models
2.4. Random Forest Model
2.5. MLP Model
2.6. Hyperparameter Tuning
2.7. Assessment Criteria for the Proposed Comparative Analysis
3. Case Study and Numerical Results
3.1. Data Library
3.2. Comparative Analysis
- Case 1: Training and testing the multi-feature single-target ML models for dataset 1;
- Case 2: Training and testing the MFMT ML models for dataset 1;
- Case 3: Validating the proposed methodology with selected ML models for dataset 2 utilizing the proposed MFMT feature mapping.
3.2.1. Case 1
3.2.2. Case 2
3.2.3. Case 3
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Li-ion | Lithium ion |
SOH | State of health |
SOC | State of charge |
DOD | Depth of discharge |
RUL | Remaining useful life |
MFMT | Multi-feature multi-target |
C-rate | Current rate |
MC | Monte Carlo |
ML | Machine learning |
DL | Deep learning |
NN | Neural network |
DNN | Deep neural network |
CNN | Convolutional neural network |
CNN-LSTM | Convolutional neural network–long short-term memory |
TCNN | Temporal convolutional neural network |
RNN | Recurrent neural network |
LSTM | Long short-term memory |
XGBoost | Extreme gradient boosting |
LightGBM | Light gradient-boosting machine |
XGBoost-HT | Extreme gradient boosting with hyperparameter tuning |
LightGBM-HT | Light gradient-boosting machine with hyperparameter tuning |
TCN | Temporal convolutional network |
MLP | Multi-layer perceptron |
RF | Random Forest |
SVR | Support Vector Regression |
GRU | Gated recurrent unit |
RMSE | Root-mean-squared error |
MAE | Mean absolute error |
MAPE | Mean absolute percentage error |
PSO | Particle swarm optimization |
References
- Jagadale, A.; Zhou, X.; Xiong, R.; Dubal, D.P.; Xu, J.; Yang, S. Lithium ion capacitors (LICs): Development of the materials. Energy Storage Mater. 2019, 19, 314–329. [Google Scholar] [CrossRef]
- Rahimi-Eichi, H.; Ojha, U.; Baronti, F.; Chow, M.Y. Battery management system: An overview of its application in the smart grid and electric vehicles. IEEE Ind. Electron. Mag. 2013, 7, 4–16. [Google Scholar] [CrossRef]
- Lipu, M.H.; Hannan, M.; Hussain, A.; Hoque, M.; Ker, P.J.; Saad, M.H.M.; Ayob, A. A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations. J. Clean. Prod. 2018, 205, 115–133. [Google Scholar] [CrossRef]
- Safavi, V.; Bazmohammadi, N.; Vasquez, J.C.; Guerrero, J.M. Battery State-of-Health Estimation: A Step towards Battery Digital Twins. Electronics 2024, 13, 587. [Google Scholar] [CrossRef]
- Ahmadian, A.; Sedghi, M.; Elkamel, A.; Fowler, M.; Golkar, M.A. Plug-in electric vehicle batteries degradation modeling for smart grid studies: Review, assessment and conceptual framework. Renew. Sustain. Energy Rev. 2018, 81, 2609–2624. [Google Scholar] [CrossRef]
- Li, Y.; Liu, K.; Foley, A.M.; Zülke, A.; Berecibar, M.; Nanini-Maury, E.; Van Mierlo, J.; Hoster, H.E. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renew. Sustain. Energy Rev. 2019, 113, 109254. [Google Scholar] [CrossRef]
- Xu, B.; Oudalov, A.; Ulbig, A.; Andersson, G.; Kirschen, D.S. Modeling of Lithium-Ion Battery Degradation for Cell Life Assessment. IEEE Trans. Smart Grid 2018, 9, 1131–1140. [Google Scholar] [CrossRef]
- El-Dalahmeh, M.; Al-Greer, M.; El-Dalahmeh, M.; Bashir, I. Physics-based model informed smooth particle filter for remaining useful life prediction of lithium-ion battery. Measurement 2023, 214, 112838. [Google Scholar] [CrossRef]
- Downey, A.; Lui, Y.H.; Hu, C.; Laflamme, S.; Hu, S. Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds. Reliab. Eng. Syst. Saf. 2019, 182, 1–12. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, J.; Sun, Z.; Wang, L.; Xu, R.; Li, M.; Chen, Z. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renew. Sustain. Energy Rev. 2020, 131, 110015. [Google Scholar] [CrossRef]
- Ma, L.; Tian, J.; Zhang, T.; Guo, Q.; Hu, C. Accurate and efficient remaining useful life prediction of batteries enabled by physics-informed machine learning. J. Energy Chem. 2024, 91, 512–521. [Google Scholar] [CrossRef]
- Nascimento, R.G.; Corbetta, M.; Kulkarni, C.S.; Viana, F.A. Hybrid physics-informed neural networks for lithium-ion battery modeling and prognosis. J. Power Sources 2021, 513, 230526. [Google Scholar] [CrossRef]
- Xie, Q.; Liu, R.; Huang, J.; Su, J. Residual life prediction of lithium-ion batteries based on data preprocessing and a priori knowledge-assisted CNN-LSTM. Energy 2023, 281, 128232. [Google Scholar] [CrossRef]
- Tang, A.; Jiang, Y.; Nie, Y.; Yu, Q.; Shen, W.; Pecht, M.G. Health and lifespan prediction considering degradation patterns of lithium-ion batteries based on transferable attention neural network. Energy 2023, 279, 128137. [Google Scholar] [CrossRef]
- Tang, T.; Yuan, H. The capacity prediction of Li-ion batteries based on a new feature extraction technique and an improved extreme learning machine algorithm. J. Power Sources 2021, 514, 230572. [Google Scholar] [CrossRef]
- Li, L.; Li, Y.; Mao, R.; Li, L.; Hua, W.; Zhang, J. Remaining useful life prediction for lithium-ion batteries with a hybrid model based on TCN-GRU-DNN and dual attention mechanism. IEEE Trans. Transp. Electrif. 2023, 9, 4726–4740. [Google Scholar] [CrossRef]
- Rouhi Ardeshiri, R.; Ma, C. Multivariate gated recurrent unit for battery remaining useful life prediction: A deep learning approach. Int. J. Energy Res. 2021, 45, 16633–16648. [Google Scholar] [CrossRef]
- Wei, M.; Ye, M.; Wang, Q.; Twajamahoro, J.P. Remaining useful life prediction of lithium-ion batteries based on stacked autoencoder and gaussian mixture regression. J. Energy Storage 2022, 47, 103558. [Google Scholar] [CrossRef]
- Hafizhahullah, H.; Yuliani, A.R.; Pardede, H.; Ramdan, A.; Zilvan, V.; Krisnandi, D.; Kadar, J. A Hybrid CNN-LSTM for Battery Remaining Useful Life Prediction with Charging Profiles Data. In Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications, Virtual Event, Indonesia, 22–23 November 2022; pp. 106–110. [Google Scholar]
- Zhang, Z.; Zhang, W.; Yang, K.; Zhang, S. Remaining useful life prediction of lithium-ion batteries based on attention mechanism and bidirectional long short-term memory network. Measurement 2022, 204, 112093. [Google Scholar] [CrossRef]
- Han, Y.; Li, C.; Zheng, L.; Lei, G.; Li, L. Remaining useful life prediction of lithium-ion batteries by using a denoising transformer-based neural network. Energies 2023, 16, 6328. [Google Scholar] [CrossRef]
- Pugalenthi, K.; Park, H.; Hussain, S.; Raghavan, N. Remaining useful life prediction of lithium-ion batteries using neural networks with adaptive bayesian learning. Sensors 2022, 22, 3803. [Google Scholar] [CrossRef]
- Park, K.; Choi, Y.; Choi, W.J.; Ryu, H.Y.; Kim, H. LSTM-based battery remaining useful life prediction with multi-channel charging profiles. IEEE Access 2020, 8, 20786–20798. [Google Scholar] [CrossRef]
- Yang, N.; Hofmann, H.; Sun, J.; Song, Z. Remaining Useful Life Prediction of Lithium-ion Batteries with Limited Degradation History Using Random Forest. IEEE Trans. Transp. Electrif. 2023. [Google Scholar] [CrossRef]
- Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; et al. Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 2019, 4, 383–391. [Google Scholar] [CrossRef]
- Jafari, S.; Byun, Y.C. Optimizing Battery RUL Prediction of Lithium-ion Batteries based on Harris Hawk Optimization Approach using Random Forest and LightGBM. IEEE Access 2023, 11, 87034–87046. [Google Scholar] [CrossRef]
- Ha, V.T. Experimental Study on Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Three Regressions Models for Electric Vehicle Applications. Appl. Sci. 2023, 13, 7660. [Google Scholar] [CrossRef]
- Ali, Z.A.; Abduljabbar, Z.H.; Taher, H.A.; Sallow, A.B.; Almufti, S.M. Exploring the Power of eXtreme Gradient Boosting Algorithm in Machine Learning: A Review. Acad. J. Nawroz Univ. 2023, 12, 320–334. [Google Scholar]
- Liu, X.; Liu, X.; Fang, L.; Wu, M.; Wu, J. Dual particle swarm optimization based data-driven state of health estimation method for lithium-ion battery. J. Energy Storage 2022, 56, 105908. [Google Scholar] [CrossRef]
- Que, Z.; Xu, Z. A data-driven health prognostics approach for steam turbines based on xgboost and dtw. IEEE Access 2019, 7, 93131–93138. [Google Scholar] [CrossRef]
- Yang, S. Prediction Method of Remaining Service Life of Li-ion Batteries Based on XGBoost and LightGBM. In Proceedings of the 2022 2nd International Conference on Algorithms, High Performance Computing and Artificial Intelligence (AHPCAI), Guangzhou, China, 21–23 October 2022; pp. 324–327. [Google Scholar]
- Jafari, S.; Byun, Y.C. XGBoost-Based Remaining Useful Life Estimation Model with Extended Kalman Particle Filter for Lithium-Ion Batteries. Sensors 2022, 22, 9522. [Google Scholar] [CrossRef]
- Bentéjac, C.; Csörgo, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021, 54, 1937–1967. [Google Scholar] [CrossRef]
- Jiao, Z.; Wang, H.; Xing, J.; Yang, Q.; Yang, M.; Zhou, Y.; Zhao, J. A LightGBM Based Framework for Lithium-Ion Battery Remaining Useful Life Prediction Under Driving Conditions. IEEE Trans. Ind. Inform. 2023, 19, 11353–11362. [Google Scholar] [CrossRef]
- Smagulova, K.; James, A.P. A survey on LSTM memristive neural network architectures and applications. Eur. Phys. J. Spec. Top. 2019, 228, 2313–2324. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Z.; Kong, D.; Han, H.; Zhao, Y. EA-LSTM: Evolutionary attention-based LSTM for time series prediction. Knowl. Based Syst. 2019, 181, 104785. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A random forest guided tour. Test 2016, 25, 197–227. [Google Scholar] [CrossRef]
- Popescu, M.C.; Balas, V.E.; Perescu-Popescu, L.; Mastorakis, N. Multilayer perceptron and neural networks. WSEAS Trans. Circuits Syst. 2009, 8, 579–588. [Google Scholar]
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Belete, D.M.; Huchaiah, M.D. Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results. Int. J. Comput. Appl. 2022, 44, 875–886. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE). Geosci. Model Dev. Discuss. 2014, 7, 1525–1534. [Google Scholar]
- Zhao, C.; Li, X. Microgrid Optimal Energy Scheduling Considering Neural Network based Battery Degradation. IEEE Trans. Power Syst. 2023, 39, 1594–1606. [Google Scholar] [CrossRef]
- Omar, N.; Monem, M.A.; Firouz, Y.; Salminen, J.; Smekens, J.; Hegazy, O.; Gaulous, H.; Mulder, G.; Van den Bossche, P.; Coosemans, T.; et al. Lithium iron phosphate based battery—Assessment of the aging parameters and development of cycle life model. Appl. Energy 2014, 113, 1575–1585. [Google Scholar] [CrossRef]
- Ma, G.; Wang, Z.; Liu, W.; Fang, J.; Zhang, Y.; Ding, H.; Yuan, Y. A two-stage integrated method for early prediction of remaining useful life of lithium-ion batteries. Knowl. Based Syst. 2023, 259, 110012. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, C.; Sun, X.; Li, Y.; Lu, H. Two-phase early prediction method for remaining useful life of lithium-ion batteries based on a neural network and Gaussian process regression. Front. Energy 2023, 1–16. [Google Scholar] [CrossRef]
- Alipour, M.; Tavallaey, S.S.; Andersson, A.M.; Brandell, D. Improved Battery Cycle Life Prediction Using a Hybrid Data-Driven Model Incorporating Linear Support Vector Regression and Gaussian. ChemPhysChem 2022, 23, e202100829. [Google Scholar] [CrossRef]
Model | Case 1 | Case 2 | ||
---|---|---|---|---|
MAE | RMSE | MAE | RMSE | |
XGBoost | 0.029 | 0.065 | 0.013 | 0.055 |
XGBoost-HT | 0.033 | 0.057 | 0.014 | 0.040 |
MLP | 0.086 | 0.120 | 0.058 | 0.107 |
Random Forest | 0.032 | 0.065 | 0.014 | 0.052 |
LSTM | 0.058 | 0.093 | 0.050 | 0.103 |
Attention-LSTM | 0.041 | 0.074 | 0.047 | 0.099 |
LightGBM | 0.040 | 0.075 | - | - |
LightGBM-HT | 0.039 | 0.070 | - | - |
Benchmark | Model | RMSE (cycle) | MAPE (%) | ||
---|---|---|---|---|---|
Training | Test | Training | Test | ||
Severson et al. [25] | Variance | 103 | 138 | 14.1 | 14.7 |
Discharge | 76 | 91 | 9.8 | 13 | |
Full | 51 | 118 | 5.6 | 14.1 | |
Ma et al. [44] | CNN | 51 | 90 | 5.1 | 10 |
Wei et al. [45] | GPR | 1 | 80 | 0.09 | 8 |
Alipour et al. [46] | LSVR | 13.8 | 177 | 1.1 | 8.3 |
This paper | XGBoost | 0.9 | 73.4 | 0.1 | 7.2 |
XGBoost-HT | 1.6 | 69 | 0.2 | 6.5 | |
Random Forest | 36.2 | 88 | 3.7 | 9.2 | |
Attention-LSTM | 223.6 | 237.8 | 31.5 | 29.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safavi, V.; Mohammadi Vaniar, A.; Bazmohammadi, N.; Vasquez, J.C.; Guerrero, J.M. Battery Remaining Useful Life Prediction Using Machine Learning Models: A Comparative Study. Information 2024, 15, 124. https://doi.org/10.3390/info15030124
Safavi V, Mohammadi Vaniar A, Bazmohammadi N, Vasquez JC, Guerrero JM. Battery Remaining Useful Life Prediction Using Machine Learning Models: A Comparative Study. Information. 2024; 15(3):124. https://doi.org/10.3390/info15030124
Chicago/Turabian StyleSafavi, Vahid, Arash Mohammadi Vaniar, Najmeh Bazmohammadi, Juan C. Vasquez, and Josep M. Guerrero. 2024. "Battery Remaining Useful Life Prediction Using Machine Learning Models: A Comparative Study" Information 15, no. 3: 124. https://doi.org/10.3390/info15030124
APA StyleSafavi, V., Mohammadi Vaniar, A., Bazmohammadi, N., Vasquez, J. C., & Guerrero, J. M. (2024). Battery Remaining Useful Life Prediction Using Machine Learning Models: A Comparative Study. Information, 15(3), 124. https://doi.org/10.3390/info15030124