Real-Time Identification and Nonlinear Control of a Permanent-Magnet Synchronous Motor Based on a Physics-Informed Neural Network and Exact Feedback Linearization
Abstract
:1. Introduction
2. Theoretical Framework
2.1. State Space Nonlinear Modeling of a PMSM in Continuous Time
2.2. Discrete State Space Nonlinear Modeling of a PMSM
2.3. PINN-Based Identification
2.4. Exact Feedback Linearization in Discrete Time
3. Results
3.1. Experimental Setup
3.2. Training Dataset
3.3. Training Process
3.4. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gong, C.; Hu, Y.; Gao, J.; Wang, Y.; Yan, L. An Improved Delay-Suppressed Sliding-Mode Observer for Sensorless Vector-Controlled PMSM. IEEE Trans. Ind. Electron. 2020, 67, 5913. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, G.; Ouyang, H.; Mei, L. A Sliding Mode Control with Nonlinear Fractional Order PID Sliding Surface for the Speed Operation of Surface-Mounted PMSM Drives Based on an Extended State Observer. Math. Probl. Eng. 2019, 2019, 7130232. [Google Scholar] [CrossRef]
- Xu, W.; Ismail, M.M.; Liu, Y.; Islam, M.R. Parameter Optimization of Adaptive Flux-Weakening Strategy for Permanent-Magnet Synchronous Motor Drives Based on Particle Swarm Algorithm. IEEE Trans. Power Electron. 2019, 34, 12128–12140. [Google Scholar] [CrossRef]
- Sun, X.; Li, Z.; Wang, X.; Li, C. Technology Development of Electric Vehicles: A Review. Energies 2020, 13, 90. [Google Scholar] [CrossRef]
- Gong, C.; Hu, Y.; Ni, K.; Liu, J.; Gao, J. SM Load Torque Observer-Based FCS-MPDSC with Single Prediction Horizon for High Dynamics of Surface-Mounted PMSM. IEEE Trans. Power Electron. 2020, 35, 20–24. [Google Scholar] [CrossRef]
- Kumar, P.; Student Member, G.; Vijaya Bhaskar, D.; Ranjan Muduli, U.; Beig, A.R.; Member, S.; Kumar Behera, R. Iron-Loss Modeling With Sensorless Predictive Control of PMBLDC Motor Drive for Electric Vehicle Application. IEEE Trans. Transp. Electrif. 2021, 7, 1506–1515. [Google Scholar] [CrossRef]
- Darcy, A.; Jegha, G.; Subathra, P.; Manoj Kumar, N.; Subramaniam, U.; Padmanaban, S. A High Gain DC-DC Converter with Grey Wolf Optimizer Based MPPT Algorithm for PV Fed BLDC Motor Drive. Appl. Sci. 2020, 10, 2797. [Google Scholar] [CrossRef]
- Karthick, K.; Ravivarman, S.; Samikannu, R.; Vinoth, K.; Sasikumar, B. Analysis of the Impact of Magnetic Materials on Cogging Torque in Brushless DC Motor. Adv. Mater. Sci. Eng. 2021, 2021, 5954967. [Google Scholar] [CrossRef]
- Djouadi, H.; Ouari, K.; Belkhier, Y.; Lehouche, H.; Bajaj, M.; Blazek, V. Improved Robust Model Predictive Control for PMSM using Backstepping Control and Incorporating Integral Action with Experimental Validation. Results Eng. 2024, 23, 102416. [Google Scholar] [CrossRef]
- Li, H.; Liu, Z.; Shao, J. A Model Predictive Current Control Based on Adaline Neural Network for PMSM. J. Electr. Eng. Technol. 2023, 18, 953–960. [Google Scholar] [CrossRef]
- Velarde-Gomez, S.; Molina-Cabrera, A.; Giraldo, E. Model-based Adaptive Control of a 3D Printed Permanent Magnet Synchronous Motor. Eng. Lett. 2023, 31, 1804–1812. [Google Scholar]
- Sastry, S. Nonlinear Systems: Analysis, Stability, and Control; Interdisciplinary Applied Mathematics; Springer: New York, NY, USA, 2013. [Google Scholar]
- Raissi, M.; Perdikaris, P.; Karniadakis, G. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Antonelo, E.A.; Camponogara, E.; Seman, L.O.; Jordanou, J.P.; de Souza, E.R.; Hübner, J.F. Physics-informed neural nets for control of dynamical systems. Neurocomputing 2024, 579, 127419. [Google Scholar] [CrossRef]
- Seo, J. Solving real-world optimization tasks using physics-informed neural computing. Sci. Rep. 2024, 14, 202. [Google Scholar] [CrossRef]
- Alvarez, H.V.; Fabiani, G.; Kazantzis, N.; Siettos, C.; Kevrekidis, I.G. Discrete-time nonlinear feedback linearization via physics-informed machine learning. J. Comput. Phys. 2023, 492, 112408. [Google Scholar] [CrossRef]
- Alvarez, H.V.; Fabiani, G.; Kevrekidis, I.G.; Kazantzis, N.; Siettos, C. Nonlinear Discrete-Time Observers with Physics-Informed Neural Networks. arXiv 2024, arXiv:2402.12360. [Google Scholar] [CrossRef]
- Song, W.; Li, J.; Ma, C.; Xia, Y.; Yu, B. A Simple Tuning Method of PI regulators in FOC for PMSM Drives based on Deadbeat Predictive Conception. In IEEE Transactions on Transportation Electrification; IEEE: Piscataway, NJ, USA, 2024; p. 1. [Google Scholar] [CrossRef]
- Nicola, M.; Nicola, C.I. Improvement of Linear and Nonlinear Control for PMSM Using Computational Intelligence and Reinforcement Learning. Mathematics 2022, 10, 4667. [Google Scholar] [CrossRef]
- Goodwin, G.C.; Sin, K.S. Adaptive Filtering, Prediction and Control; Dover Publications Inc.: Englewood-Cliffs, NJ, USA, 2009. [Google Scholar]
Parameters | Unit | Value |
---|---|---|
Rated voltage | V | 40 |
Rated speed | RPM | 6000 |
Rated torque | N·m | 0.274 |
Rated power | W | 170 |
Continuous current | A | 7.1 |
Pair poles () | - | 4 |
Stator resistance per phase (R) | 0.3643 | |
Inductance, phase to phase | mH | 0.40 |
Electrical time constant | mS | 0.56 |
Back EMF | Vpeak/kRPM | 4.64 |
Encoder resolution | counts/rev | 4000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velarde-Gomez, S.; Giraldo, E. Real-Time Identification and Nonlinear Control of a Permanent-Magnet Synchronous Motor Based on a Physics-Informed Neural Network and Exact Feedback Linearization. Information 2024, 15, 577. https://doi.org/10.3390/info15090577
Velarde-Gomez S, Giraldo E. Real-Time Identification and Nonlinear Control of a Permanent-Magnet Synchronous Motor Based on a Physics-Informed Neural Network and Exact Feedback Linearization. Information. 2024; 15(9):577. https://doi.org/10.3390/info15090577
Chicago/Turabian StyleVelarde-Gomez, Sergio, and Eduardo Giraldo. 2024. "Real-Time Identification and Nonlinear Control of a Permanent-Magnet Synchronous Motor Based on a Physics-Informed Neural Network and Exact Feedback Linearization" Information 15, no. 9: 577. https://doi.org/10.3390/info15090577
APA StyleVelarde-Gomez, S., & Giraldo, E. (2024). Real-Time Identification and Nonlinear Control of a Permanent-Magnet Synchronous Motor Based on a Physics-Informed Neural Network and Exact Feedback Linearization. Information, 15(9), 577. https://doi.org/10.3390/info15090577