Quickly Finding the Semantically Optimal Presentation Order for a Set of Text Artifacts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Encoding and Measuring the Semantic Distance Between Text Artifacts
2.2. The Proposed Algorithm
Algorithm 1: Quickly finding the semantically optimal presentation order for a set of text artifacts |
|
2.3. Data
2.4. Experiments
2.5. Methods for Evaluating the Proposed Algorithm
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.; Thomas, P.; Sankaranarayana, R.; Gedeon, T.; Yoon, H.-J. Pagination Versus Scrolling in Mobile Web Search. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, New York, NY, USA, 24–28 October 2016. [Google Scholar]
- MacDonald, D. Practical UI Patterns for Design Systems: Fast-Track Interaction Design for a Seamless User Experience; Apress: New York, NY, USA, 2019. [Google Scholar]
- Tidwell, J. Designing Interfaces: Patterns for Effective Interaction Design; O’Reilly Media: Sebastopol, CA, USA, 2010. [Google Scholar]
- Bernstein, G. Unwired: Gaining Control over Addictive Technologies; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Kelly, D.; Azzopardi, L. How Many Results Per Page? A Study of SERP Size, Search Behavior and User Experience. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, 9–13 August 2015. [Google Scholar]
- Claussen, J.; Kretschmer, T.; Mayrhofer, P. The Effects of Rewarding User Engagement: The Case of Facebook Apps. Inf. Syst. Res. 2013, 24, 186–200. [Google Scholar] [CrossRef]
- Wu, F.; Huberman, B.A. Novelty and Collective Attention. Proc. Natl. Acad. Sci. USA 2007, 104, 17599–17601. [Google Scholar] [CrossRef] [PubMed]
- Ernst, D.; Becker, S.; Horstmann, G. Novelty Competes with Saliency for Attention. Vis. Res. 2020, 168, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Costa, V.D.; Tran, V.L.; Turchi, J.; Averbeck, B.B. Dopamine Modulates Novelty Seeking Behavior During Decision Making. Behav. Neurosci. 2014, 128, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Duszkiewicz, A.J.; McNamara, C.G.; Takeuchi, T.; Genzel, L. Novelty and Dopaminergic Modulation of Memory Persistence: A Tale of Two Systems. Trends Neurosci. 2019, 42, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Ping, Y.; Li, Y.; Zhu, J. Beyond Accuracy Measures: The Effect of Diversity, Novelty and Serendipity in Recommender Systems on User Engagement. Electron. Commer. Res. 2024, 1–28. [Google Scholar] [CrossRef]
- O’Brien, H.L. Exploring User Engagement in Online News Interactions. Proc. Am. Soc. Inf. Sci. Technol. 2011, 48, 1–10. [Google Scholar] [CrossRef]
- Carmel, D.; Roitman, H.; Yom-Tov, E. On the Relationship Between Novelty and Popularity of User-Generated Content. ACM Trans. Intell. Syst. Technol. (TIST) 2012, 3, 1–19. [Google Scholar] [CrossRef]
- Rips, L.J.; Shoben, E.J.; Smith, E.E. Semantic Distance and the Verification of Semantic Relations. J. Verbal Learn. Verbal Behav. 1973, 12, 1–20. [Google Scholar] [CrossRef]
- Lee, D.L.; Chuang, H.; Seamons, K. Document Ranking and the Vector-Space Model. IEEE Softw. 1997, 14, 67–75. [Google Scholar] [CrossRef]
- Deerwester, S.; Dumais, S.T.; Furnas, G.W.; Landauer, T.K.; Harshman, R. Indexing by Latent Semantic Analysis. J. Am. Soc. Inf. Sci. 1990, 41, 391–407. [Google Scholar] [CrossRef]
- Reimers, N.; Gurevych, I. Sentence-BERT: Sentence Embeddings Using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, Hong Kong, China, 3–7 November 2019; pp. 3982–3992. [Google Scholar]
- IMDb. Internet Movie Database; Amazon: Seattle, WA, USA, 2024; Available online: https://www.imdb.com (accessed on 15 October 2024).
- Box Office Mojo. Worldwide Lifetime Gross Box Office Revenues; IMDb Pro: Seattle, WA, USA, 2024; Available online: https://www.boxofficemojo.com (accessed on 15 October 2024).
- Bird, S.; Loper, E.; Klein, E. Natural Language Toolkit; NLTK Project: Philadelphia, PA, USA, 2024; Available online: https://www.nltk.org (accessed on 15 October 2024).
- Billboard Magazine. Billboard Hot 100 Singles Chart; Penske Media Corporation: Los Angeles, CA, USA, 2024. [Google Scholar]
- LyricFind. Song Lyrics Database; LyricFind, Inc.: Toronto, ON, USA, 2024; Available online: https://www.lyricfind.com (accessed on 15 October 2024).
- Wasserman, L. All of Statistics: A Concise Course in Statistical Inference; Springer: New York, NY, USA, 2013. [Google Scholar]
- Google LLC. Google Colaboratory; Alphabet Inc.: Mountain View, CA, USA, 2024. [Google Scholar]
- Welch, B.L. The Generalization of “Student’s” Problem When Several Different Population Varlances Are Involved. Biometrika 1947, 34, 28–35. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Deng, L. Deep Learning for Image-to-Text Generation: A Technical Overview. IEEE Signal Process. 2017, 34, 109–116. [Google Scholar] [CrossRef]
- Apostolidis, E.; Adamantidou, E.; Metsai, A.I.; Mezaris, V.; Patras, I. Video Summarization Using Deep Neural Networks: A Survey. Proc. IEEE 2021, 109, 1838–1863. [Google Scholar] [CrossRef]
- Trivedi, A.; Pant, N.; Shah, P.; Sonik, S.; Agrawal, S. Speech to Text and Text to Speech Recognition Systems—A Review. IOSR J. Comput. Eng. 2018, 20, 36–43. [Google Scholar]
- Epstein, Z.; Hertzmann, A.; Creativity, I.O.H.; Akten, M.; Farid, H.; Fjeld, J.; Frank, M.R.; Groh, M.; Herman, L.; Leach, N. Art and the Science of Generative AI. Science 2023, 380, 1110–1111. [Google Scholar] [CrossRef] [PubMed]
- Nah, F.F.-H. A Study on Tolerable Waiting Time: How Long Are Web Users Willing to Wait? Behav. Inf. Technol. 2004, 23, 153–163. [Google Scholar] [CrossRef]
- Lee, Y.; Chen, A.N.; Ilie, V. Can Online Wait Be Managed? The Effect of Filler Interfaces and Presentation Modes on Perceived Waiting Time Online. MIS Q. 2012, 36, 365–394. [Google Scholar] [CrossRef]
- Hong, W.; Hess, T.J.; Hardin, A. When Filling the Wait Makes it Feel Longer: A Paradigm Shift Perspective for Managing Online Delay. MIS Q. 2013, 37, 383–406. [Google Scholar] [CrossRef]
Sequence | |
---|---|
A→B→C A→C→B B→A→C | C→B→A B→C→A C→A→B |
Sequence Length | Mean Wall-Clock Time (Seconds) | Mean Cosine Distance of Best Sequence | Average Quality of Algorithmic Sequence | ||
---|---|---|---|---|---|
Proposed Algorithm | Exhaustive Search | Proposed Algorithm | Exhaustive Search | ||
5 | 0.00028 *** | 0.00316 | 3.52583 | 3.53478 ns | 0.99278 |
6 | 0.00031 *** | 0.00797 | 4.44218 | 4.45140 ns | 0.99722 |
7 | 0.00029 *** | 0.02623 | 5.29985 | 5.32438 ns | 0.99827 |
8 | 0.00041 *** | 0.23103 | 6.27516 | 6.31719 ns | 0.99788 |
9 | 0.00050 *** | 2.16796 | 7.14110 | 7.19904 ns | 0.99986 |
10 | 0.00057 *** | 22.07154 | 8.12200 | 8.16449 ns | 0.99998 |
11 | 0.00072 *** | 256.39432 | 9.08820 | 9.19619 ns | 0.99996 |
Sequence Length | Mean Wall-Clock Time (Seconds) | Mean Cosine Distance of Best Sequence | Average Quality of Algorithmic Sequence | ||
---|---|---|---|---|---|
Proposed Algorithm | Exhaustive Search | Proposed Algorithm | Exhaustive Search | ||
5 | 0.00036 *** | 0.00074 | 3.59040 | 3.59219 ns | 0.99500 |
6 | 0.00026 *** | 0.00363 | 4.50808 | 4.51811 ns | 0.99833 |
7 | 0.00034 *** | 0.02710 | 5.39192 | 5.41109 ns | 0.99923 |
8 | 0.00044 *** | 0.23080 | 6.37339 | 6.44631 ns | 0.99881 |
9 | 0.00053 *** | 2.05910 | 7.27462 | 7.33826 ns | 0.99959 |
10 | 0.00063 *** | 22.24218 | 8.30702 | 8.39426 ns | 0.99992 |
11 | 0.00070 *** | 256.20882 | 9.17250 | 9.29327 ns | 0.99997 |
Sequence Length | Mean Wall-Clock Time (Seconds) | Mean Cosine Distance of Best Sequence | Average Quality of Algorithmic Sequence | ||
---|---|---|---|---|---|
Proposed Algorithm | Exhaustive Search | Proposed Algorithm | Exhaustive Search | ||
5 | 0.00021 *** | 0.00061 | 2.48525 | 2.49249 ns | 0.99278 |
6 | 0.00045 *** | 0.00373 | 3.06495 | 3.09022 ns | 0.99324 |
7 | 0.00037 *** | 0.02884 | 3.70566 | 3.74845 ns | 0.99595 |
8 | 0.00041 *** | 0.23391 | 4.39472 | 4.46422 ns | 0.99781 |
9 | 0.00051 *** | 2.12178 | 4.98578 | 5.08293 ns | 0.99752 |
10 | 0.00064 *** | 22.08317 | 5.77806 | 5.92306 ns | 0.99865 |
11 | 0.00068 *** | 255.74082 | 6.30305 | 6.49257 ns | 0.99877 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soper, D.S. Quickly Finding the Semantically Optimal Presentation Order for a Set of Text Artifacts. Information 2025, 16, 59. https://doi.org/10.3390/info16010059
Soper DS. Quickly Finding the Semantically Optimal Presentation Order for a Set of Text Artifacts. Information. 2025; 16(1):59. https://doi.org/10.3390/info16010059
Chicago/Turabian StyleSoper, Daniel S. 2025. "Quickly Finding the Semantically Optimal Presentation Order for a Set of Text Artifacts" Information 16, no. 1: 59. https://doi.org/10.3390/info16010059
APA StyleSoper, D. S. (2025). Quickly Finding the Semantically Optimal Presentation Order for a Set of Text Artifacts. Information, 16(1), 59. https://doi.org/10.3390/info16010059